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A b s t r a c t
The present paper is an attempt at a comprehensive overview of studies on behaviour of overconsolidated soils at small strains.
The text has been divided into six sections related to different aspects of the addressed issues.
The first section provides an introduction. The subject of the second section is the phenomenon of abrupt drop of the tangent shear
and bulk moduli when increasing corresponding strain invariants in the ranges of their small values. Special attention is paid to
evaluating the maximum values of moduli which are constant in a region of very small strains. The third section concerns the
nature of the above mentioned material properties. The results of the discussed Jardine’s experiments indicate that there exist
four regions of different soil behaviour around a stable stress point within the admissible state space.The fourth section focuses
on simple hypoelastic laws for soils describing steep decreasing tangent shear and bulk moduli at small to moderate strains. The
fifth section presents advanced kinematic hardening elasto-plastic models which take into account, in different ways, strong stress-
strain nonlinearity at small deformations. Two models are described in more detail. The first of them is the one surface model of
the cryptonym NAHOS 1 and the other is the three surface SH3 one. The conclusion inserted in the latter sixth section discusses
briefly beneficial outcomes of accounting for small strain nonlinearity phenomenon.

S t r e s z c z e n i e
Artykuł niniejszy jest próbą obszernego przeglądu badań nad zachowaniem się prekonsolidowanych gruntów przy małych
odkształceniach. Tekst podzielony został na sześć rozdziałów związanych z różnymi aspektami przedmiotowej problematy-
ki. Rozdział pierwszy stanowi wprowadzenie. Przedmiotem drugiego rozdziału jest zjawisko gwałtownego spadku stycznych
modułów ścinania i ściśliwości ze wzrostem korespondujących niezmienników odkształcenia w zakresach ich małych wartoś-
ci. Specjalna uwaga zwrócona jest na szacowanie maksymalnych wartości modułów, które są stałe w przedziale bardzo
małych odkształceń. Rozdział trzeci dotyczy natury wspomnianych zjawisk. Wyniki omawianych eksperymentów Jardine’a
wskazują na istnienie, wokół ustalonego punktu naprężenia wewnątrz dozwolonej przestrzeni stanu, czterech obszarów
różnego zachowania się gruntu. Rozdział czwarty skupiony jest na prostych prawach hiposprężystych dla gruntów, opisują-
cych stromy spadek stycznych modułów ścinania i ściśliwości w przedziale od małych do umiarkowanych odkształceń. Piąty
rozdział przedstawia zaawansowane modele sprężysto-plastyczne o wzmocnieniu kinematycznym, które biorą pod uwagę,
w różny sposób, silną nieliniowość związków „naprężenie-odkształcenie” w zakresie małych odkształceń. Dwa z nich opisane
są bardziej szczegółowo. Pierwszy z nich, jest jednopowierzchniowym modelem o nazwie NAHOS 1 a drugi trójpowierzch-
niowym modelem SH3. Podsumowanie zamieszczone w ostatnim szóstym rozdziale omawia pokrótce korzyści wynikające
z uwzględnienia zjawiska silnej nieliniowości w zakresie małych odkształceń.

K e y w o r d s : Soil overconsolidation subspace; Steep decrease of shear and bulk moduli at small strains; Kinematic nature
of stiffness changes; Simple nonlinear and advanced kinematic hardening elasto-plastic models accounting for strong nonlin-
earity at small strains.
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1. INTRODUCTION
The terms: „soil behaviour at small strains”, “small
strain stiffness”, “small strain nonlinearity” have
recently become very important notions of soil
mechanics. They all refer to the same phenomenon
characteristic for particulate media which consists in
an abrupt drop in initially high soil stiffness, while soil
deformation increases in a range of small values. It
means that the change in distortional strain from
10-4 to 10-2 can involve the secant shear modulus
reduction exceeding one order of magnitude (from
ten to fifteen times.) The ”distortional strain-tangent
shear modulus” relationship appears to be almost
identical in respect of character. The compared
curves run beside one another while the distance
between them increases slightly (Fig. 1.) The routes
of “volumetric strain-bulk. (secant or tangent) modu-
lus” characteristics are also similar to those shown in
Fig. 1 but they drop more steeply (Fig. 2).
Since the early eighties many laboratory and field
tests have been performed world-wide to study soil
behaviour at small strains and describe it mathemati-
cally. It is worth noticing that natural soil deposits are
practically always more or less overconsolidated.
Thus, the first stages of material’s responses to loads
transmitted from structures run through the overcon-
solidation state subspace, and the small strain nonlin-
earity phenomenon is also related to that state.
Initially, investigations focused solely on the physical
nonlinearity as defined above, without identifying the
nature of deformations (reversible or irreversible,
and instant or retarded.)
Later studies carried out at the beginning of the
nineties were devoted to changes in character of
deformations together with their increase, from lin-
ear elastic, through nonlinear elastic (hysteretic) and
small plastic, to large plastic for normal consolidation
states.
At the same time the relevant research work was per-
formed on the constitutive models describing over-
consolidated soil behaviour at small strains. The first
group of proposals comprised some relatively simple
hypoelastic models approximating directly changes in
stiffness using hyperbolic or logarithmic functions,
and some classical elasto-plastic ones improved by
incorporating one or more mentioned empirical for-
mulas describing tangent stiffness moduli, as materi-
al functions.
The other group included advanced three-surface
kinematic hardening elasto-plastic models which
were extensions of the so-called two-surface concept,

and its one – surface simplification in which an elas-
tic area is reduced to a point.
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Figure 1.
Comparison of relative secant and tangent shear moduli as
dependent on axial strain (after Smith et al. [50])

Figure 2.
Variations of tangent bulk modulus with increase of volumet-
ric strain and of tangent shear one with increase of distor-
tional strain (results of drained tests along hydrostatic stress
path and stress path of tg70° slope – after Smith et al. [50])

Figure 3.
Variation of shear modulus with distortional strain – results
of resonant column tests on Todi clay (carried out by
Georgiannou et al. [16])
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2. EXPERIMENTAL INVESTIGATIONS
ON THE SMALL STRAIN STIFFNESS
Experimental observations of overconsolidated soil
behaviour at small strains began in the seventies with
the laboratory tests in resonant columns [22], [23],
[25], [47],. In general, a typical test consisted of the
measurement of the velocity of shear elastic wave
passing through a soil sample in triaxial or torsional
shear apparatus. The goal of the measurement was
evaluation of the dynamic shear modulus (as one of
the elastic stiffness constants) using the back analysis
of the relevant shear wave propagation problem. This
parameter appeared to be at least one order of mag-
nitude higher than the commonly known Kirchhoff’s
modulus for the same soil, evaluated on the ground
of results of conventional static triaxial compression
or torsional shear tests. Initially, such a great diver-
gence was explained by a difference between materi-
al responses to monotonic static and cyclic dynamic
loads. However, in the light of results of later investi-
gations the dynamic shear modulus appeared to be
constant only in a narrow range of very small strains,
estimated as 0÷10-5. According to Hardin and
Drnewich [22] the second value is also the upper limit
of accurate measurements of the modulus in the res-
onant column device. The results of tests carried out
by the mentioned writers, as well as by Iwasaki et al.
[25], showed that this modulus begins to decrease at
the value of the distortional strain exceeding 10-5, ini-
tially moderately and then steeply. These results are
quoted in Fig. 3.
Independently of that, in the light of the results of
parallel laboratory (mainly triaxial compression) tests
under monotonic loading at local measurements of
deformations, it appeared that the effect of the char-
acter of loading on the shear modulus, already insub-
stantial in the range of deformations 10-5÷10-3, can
be neglected at very small strains (<10-5) [6], [27]
(Fig. 4.) Thus, the real reason for the divergence
between the “dynamic” and Kirchhoff’s moduli
appears to be the entirely different ranges of defor-
mations occurring in dynamic and static stiffness tests
(0÷10-5 against 10-3÷10-1).
In the face of decreasing the shear modulus with
increase of deformations starting from 10-5, the above
facts allow to assume that the “dynamic” and “static”
moduli are two values of variable (secant or tangent)
shear modulus which is the function of the distor-
tional strain rather than two different elastic con-
stants. This hypothesis has been confirmed by results
of numerous laboratory and field tests (see among
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Figure 4.
Effect of the loading character on the shear modulus – com-
parison of results of cyclic and monotonic tests on Toyura
sand (after Burghignoli et al. [5])

Figure 5.
“Distortional strain-shear modulus” relationship – results
of combined resonant column and triaxial tests (after
Georgiannou et al. [16])

Figure 6.
Approximate ranges of reliable strain measurements tech-
niques for evaluating soil stiffness characteristics
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others [6], [16], [28], [42], [43], [56] – and also [2], [5],
[7]) Various testing devices and measuring systems
(bender elements, resonant columns, triaxial cells
with internal local measurement of displacements,
conventional triaxial cells with external measurement
of displacements) are needed for accurate and con-

venient measurements in different ranges of strains.
Thus, the combined test procedure comprising both
(“dynamic” and “static”) measurements is, in princi-
ple, necessary to identify “distortional strain - secant
(tangent) shear modulus” relationship in a wide
range of deformation. The good example of such a
complete identification are the results of combined
investigations (composed of resonant column and tri-
axial tests) carried out by Georgiannou et al. [16]
They are quoted in Fig. 5. Approximate ranges of
component measurement techniques situated on the
axis of deformations are shown in Fig. 6.
The research tool which played the most important
part in studying nonlinear soil behaviour at small
strains were drained and undrained triaxial tests with
local measurements of microdisplacements. Their
results have been interpreted in the form of rela-
tionships between distortional strain and shear mod-
ulus, axial strain and Young or shear modulus, as well
as (only in drained tests) volumetric strain and bulk
modulus. Interpretations have comprised secant and
tangent moduli. Considering significant inaccuracies
in small strain identification using external measuring
devices (see e.g. [2], [33], and Fig. 7) studies on the
relevant stiffness behaviour had to be proceeded by
extensive development and testing of local small
strain measurement devices (comp. [9], [17], [29],
[32], [33], [35], [39], [55]) Two examples of such
gauges are shown schematically in Fig. 8. In their
operation the first of them is based on the Hall effect
sensors and has been implemented by Clayton and
Khatrush [9], while the other uses the proximity
transducers and has been applied by, among others,
Jastrzębska [33].
Results of studies with triaxial tests using local mea-
surements of microdisplacements and dynamic meth-
ods, like those carried out by Georgiannou et al. [16]
and quoted in Fig. 5, have been presented by Jardine
[28], Jardine et al. [30], Lipiński [35], Porovic and
Jardine [42], Powell and Butcher [43], and also
Tatsuoka and Shibuya [56.]
Some investigations have been limited to triaxial tests
with local measurements of displacements (a.o.
Jardine et al. [29], Jastrzębska [32], Smith et al. [50])
This way one cannot, however, measure very small
strains to identify the linear elastic soil behaviour in
this range.
Special studies, among others by Hardin and
Drnewich [22], [23], Jamiolkowski et al. [26],
Rampello et al. [46], Viggiani [58], Viggiani and
Atkinson [59] have been devoted to this identifica-
tion, or to be more precise, to evaluation of initial
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Figure 7.
Divergence of results of external and local measurement of
displacements in triaxial apparatus (after Jastrzębska
[33])

Figure 8.
Two types of gauges for local measurement of displacements
in triaxial apparatus, a) Hall effect sensors, b) proximity
transducers
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shear modulus G0 = Gmax using, in principle, dynam-
ic methods.
The above studies include, for example, proposals of
empirical formulas describing initial shear modulus G0

as dependent on the effective mean stress p’, the void
ratio e and the overconsolidation ratio OCR. The first of
them, proposed by Hardin and Black, has been devel-
oped by Hardin and Drnevich [23] and has the form

where K is the material parameter.
Rampello et al. [46] have quoted the Hardin’s formu-
la in more general form

in which f(e) is a function evaluated experimentally,
pa is the atmospheric pressure, and S, m, n are the
material parameters. These authors have also sug-
gested an alternative approach referring to the criti-
cal state soil mechanics. Their proposal has the form

where: p’ – effective mean stress
p’ = ( �x + �y + �z)/3

pc’ – overconsolidation (equivalent) pressure,

pr – reference pressure,

S, n, c – stiffness parameters dependent on
the plasticity index Ip.

These last parameters have been specified experi-
mentally and shown in the form of correlation curves
in Fig. 9a, 9b and 9c.

Fig. 10 presents the normalized “effective mean
stress-maximum shear modulus” relationship given
by the formula (3) as fitted to experimental data. As
can be seen, the parabolic regression is a very close
approximation.
Sawicki and Świdziński (see Świdziński [55]) have
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(1)

(2)

(3)

Figure 9.
Stiffness parameters as functions of the index of plasticity Ip (after Rampello et al. [46])

Figure 10.
The normalized “effective mean stress-maximum shear mod-
ulus” relationship results of resonant column and bender
element tests on Vallerica clay (after Rampello et al. [46])

Figure 11.
Shear stress – distortional strain characteristics for several
unloading-reloading cycles – results of triaxial tests of loose
Lubiatowo sand (after Świdziński [55])

c
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proposed an approach to the elastic shear (or Young)
modulus evaluation, which is an alternative for the
above mentioned dynamic methods using the bender
elements or resonant columns. Namely, these
researchers have found that an initial straight seg-
ment of the unloading branch of “stress-strain” char-
acteristics is longer than its counterpart on the
reloading one (see Fig. 11) The segment is sufficiently
long for evaluating the maximum shear (or Young)
modulus from static triaxial tests with local measure-
ment of strains. An usage of bender elements or res-
onant columns is no longer necessary. Evaluation of
the maximum bulk, Young or constrained moduli
using this method presents no difficulty either.

3. EXPERIMENTAL INVESTIGATIONS
ON THE NATURE OF SMALL STRAIN
SOIL BEHAVIOUR
The present section deals with the nature of the small
strain nonlinearity and its changes with increasing
load. Comprehensive experimental and theoretical
studies in this research field have been carried out by
Jardine. In his important paper [27] Jardine consid-
ers an arbitrary monotonical loading path within the
bounding (state boundary) surface, starting from a
stable stress point (a local stress origin.) Along this
path he distinguishes four stress space zones differing
from one another in the nature of soil’s deformations
(Fig. 12).
Zone I is a small area surrounding the starting point
where purely linear elastic strains are the only type of
deformations to occur. At the same time, the con-
stant values of the moduli within the zone I are the
maximal ones.
In the light of considerations in [27], the elastic
threshold has not been yet quantified precisely. It can
be said that the value 10-5 mentioned in the previous
sections is average. Jardine reports 6 ·10-6 and 2 ·10-4

as extreme values for Toyoura sand and for London
clay respectively. However, after some researchers he
also notices in [27] that for slightly overconsolidated
soils the zone of purely linear elasticity may not exist.
In the range of very small strains soils can exhibit

anisotropic features. Bellotti et al. [4] carried out
comprehensive tests evaluating five independent con-
stants in the cross anisotropic linear elastic relation-
ship for dry Ticino silica sand. Generally, the tests
consisted in measurements of velocities of various
waves passing through a sand specimens of two
degrees of density, formed in a large calibration
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Figure 12.
Zones of the stress space differing in nature of deformations

Figure 13.
Effect of consolidation stress ratio on ratios of moduli (after
Bellotti et al.[4])

Figure 14.
Effect of recent stress history on stiffness of reconstituted
London Clay in triaxial constant p’ tests (after Atkinson et
al. [3])
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chamber. Constrained compression and shear waves
in vertical, horizontal and oblique directions were
propagated. The testing procedures were described
in detail and many results of tests were presented in
[4] (also see Fig. 13).
As in the case of evaluating shear or Young moduli,
an alternative approach based on unloading branch
analysis has been proposed by Sawicki and Świdzińs-
ki [48]. They performed triaxial compression tests of
Lubiatowo sand, along the hydrostatic and deviatoric
stress paths comprising several unloading-reloading
cycles. As the result, they obtained four different
elastic constants, and this indicates anisotropic soil
behaviour. They proved that loose sands are almost
isotropic, but for dense sands the anisotropy index
differs distinctly from 1.
Once the elastic threshold is crossed, soil begins to
behave like material subject to elastic hysteresis. It
means that the deformations within the full stress-
strain cycle are entirely reversible, although unload-
ing and reloading branches do not coincide, but form
closed loops. Jardine [27] interprets the energy dissi-
pation associated with the existence of the hysteretic
loop as the result of local microyielding at the inter-
particle contacts. The discussed reversible hysteretic
soil behaviour occurs in the zone II (Fig. 12.) At the
same time, soil’s response to loading becomes sensi-
tive to recent stress path directions. This phenome-
non diminishes gradually, to fade out entirely at
strain values of order 2·10-3 (Fig. 14.) The intensity of
changes in stiffness depends on the value of angle�
of rotation from the previous stress path to the cur-
rent one in p’q space.
Fig. 15 and Fig. 16 demonstrate the essential change
in stress-strain behaviour which is related to transi-
tion from zone II to zone III (Fig. 12) after crossing
the plastic threshold (about 10-5 for Toyoura sand and
4·10-4 for London clay [27]). This change consists in
appearance and development of permanent defor-
mations which manifest themselves a.o. by opening
(Fig. 15) the loops of hysteresis. Additionally, before
and after the plastic threshold, a steep decrease of
tangent shear (and bulk) stiffness takes place, as
shown in Fig. 5.
Fig. 16 shows path of the relative permanent (plastic)
shear strain as dependent on the total strain. In the
zone III, initially, this quantity grows linearly.
Further, this growth becomes progressively nonlin-
ear, to return to previous variability when the stress
path reaches the bounding surface (Fig. 16). Then
soil becomes normally consolidated and undergoes
large plastic strains (zone IV).
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Figure 15.
Stress-strain behaviour in the range of transition from zone
II to zone III (results of drained triaxial tests of Magus till-
after Jardine)

Figure 16.
Variations of the relative permanent shear strain (after
Jardine [27])

Figure 17.
Boundaries of zones for local stress points lying on the K0
swelling path (after Jardine [27])
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A particular attention is paid to the boundaries of
zones, their extents and shapes [27]. Jardine suggests
experimental identification of those by means of
adapting one of the two known procedures. The first
one consists in performing a suit of drained triaxial
tests along the radial stress paths. This way one can
find points on the paths corresponding to the plastic
threshold of the distortional strain which form the
boundary of the zone II, and other points which are
identified by the strong progression of deformations
forming the boundary of the zone III and, at the same
time, the bounding surface.
The other procedure is an attempt of the direct iden-
tification of boundaries of zone II and III. This con-
sists in performing one consolidation test to the
points specified by elastic and plastic threshold of dis-
tortional strains and then carrying out undrained
compression and extension tests, starting from the
above points. This way the main sections of the
boundaries are determined. The several remaining
points of the boundaries can be established using the
first procedure. The extents and shapes of the bound-
aries in question also depend on positions of the con-
sidered stable point in the overconsolidation stress
subspace, identified by OCR values. Fig. 17 illus-
trates the above observations for the case of the K0

swelling path and OCR = 1, 2, 4 and 17.
It is worth noticing that the specification of a suffi-
cient number of suits of the zones’ boundaries for
various OCR makes a convenient base for numerical
specification of the kinematic hardening rule. In Fig.
17 one can also see the quasi-ellipsoidal shapes of the
zones. Identification of the boundary of the zone I is
difficult because stress-strain characteristics at very
small strains cannot be measured by means of the tri-
axial apparatus. Therefore, the boundary of the zone
I is evaluated as a small area of approximately
defined extent and shape.

4. SIMPLE CONSTITUTIVE MODELS
DESCRIBING SMALL STRAIN NONLIN-
EARITY
The constitutive models for soils, describing the small
strain nonlinearity, which are reviewed in the present
section, are strictly related to the experimental
results presented in Section 2. Namely, the tangent
(or in some cases secant), Young, or shear and bulk
moduli evaluated experimentally as dependent on
stress or strain invariants, make the basic material
functions in the mentioned constitutive equations. In
terms of the mathematical structure these models can

be divided into hypoelastic (nonlinear elastic), and
elasto-plastic ones.
The hypoelastic models (defined within the infinites-
imal strain theory and formulated in the vectorial
notation) have the form of the following incremental
matrix equation:

where the infinitesimal effective stress and strain
increments are, respectively,

and the tangent matrix of isotropic elasticity

The most important step in creating hypoelastic constitu-
tive models for soils is the specification of the tangent
moduli Gt and Kt, or Et by means of direct approximation
(or more precisely – nonlinear regression) of experimen-
tal results, such as those shown in Fig. 5. These moduli
can also be defined as functions of stress invariants.
The oldest hypoelastic model aimed at accounting for
small strain nonlinearity was developed by Duncan
and Chang [14]. The tangent modulus E, which was
the only material function of the model (Poisson’s
ratio was assumed to be constant), has been adjusted
to the description of a standard triaxial test.
Therefore, instead the effective mean stress p’, the
minimal effective principal stress �3 (representing
cell water pressure) appeared in the known Duncan-
Chang’s formula [14]

where stress intensity
q = [(�x – �y)2 + (�y – �z)2 + (�z – �x)2 + 6(�xy

2

+ �yz
2 + �zx

2 )] 1/2 / 2.
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Duncan completed the above specification by adding
the formula for the bulk modulus Kt, [13]:

Desai [12] replaced the modulus Et with the tangent
shear modulus Gt in Duncan-Chang formula and
applied the effective mean stress p’ as the indepen-
dent variable. The modified relationship has taken
the form

The tangent bulk modulus Kt completing the matrix
Dt can be used in the form (9), but the transition to
the effective mean stress is here entirely natural.
Thus

In equations (8-11) E*, K*, G, K, Rf*, Rf, m*, m, n*, n
denote dimensionless material constants, pa is
atmospheric pressure,� is internal friction angle and
c is cohesion. The first segment of expression (10),
which had referred to the initial shear modulus

was later replaced by more accurate approximations
(2) or (3) proposed by Rampello et al. [46], or similar
formulas suggested by Viggiani and Atkinson [59].
A substantial improvement of the small strain stiff-
ness evaluation was achieved in the hypoelastic
model developed by Fahey and Carter [15] in which
the tangent shear modulus was expressed by formula

where q0 – initial (in situ) stress,

qf – critical shear resistance,

G*, n, f, g – material constants.

The formula (10) can be treated as a simple particu-
lar case of the expression (13), specified by substitut-
ing q0 = 0, f = Rf, g = 1 and using the Coulomb-
Mohr equation for qf.

The relation between both models is clearly shown in
Fig. 18 showing the Fahey-Carter’s “distortional
strain – relative tangent shear modulus” characteris-
tics for various values of parameters f and g. The thin
line without marked points represents the Duncan-
Chang’s concept. As can be seen, the Fahey-Carter’s
proposal offers greater simulative abilities. The first
segment of the formula (13) can be improved in a
similar manner as previously described, using approx-
imations applied by Rampello et al. [46] or by
Viggiani and Atkinson [59].
In his basic paper [27], Jardine mentions a semi-
empirical approach in which the simple “stress-tan-
gent modulus” relationships, such as (8), (9), (10),
(11), (13), are incorporated into elasto-perfectly plas-
tic or elasto-plastic isotropic hardening constitutive
equations for soils, especially into models of critical
state mechanics.
These hybrid models constitute the main subject of
discussion in the present section. The first group is
related to the Fahey-Carter’s model. Coquillay [10]
has used the formula (13) for definition of Gt in the
tangent matrix of elasticity (7) completing its specifi-
cation by assuming Kt as

C
I

V
I

L
E

N
G

I
N

E
E

R
I

N
G

e

1/2009 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 69

(9)

(10)

(11)

(12)

(13)

Figure 18.
The comparison of Duncan-Chang’s model with Fahey-
Carter’s one (after [15])

c

(14)
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Coquillay has linked the hypoelastic segment of the
constitutive matrix equation, quantified by the matrix
(7), to the elasto-perfectly plastic component deriv-
ing from the plastic flow rule associated with the
Coulomb-Mohr limit condition. In [10], Coquillay’s
model has been implemented to FEM computer
code. Some numerical studies have illustrated possi-
bilities of its practical applications.
Another concept has been developed by Grycz-
mański and Uliniarz [19], [57]. Their proposal was a
combination of the well-known concepts: Fahey-
Carter model and Modified Cam Clay. The Fahey-
Carter model is assumed to be valid within the over-
consolidation area, i.e. in the stress subspace con-
fined by the current configuration of MCC yield
locus. For normal consolidation states occurring in
the remaining physically admissible stress subspace,
mechanical soil behaviour is described by the
Modified Cam Clay (Fig. 19).
Continuous transition from one model to the other is
achieved through treating the bulk and shear moduli
as equivalent parameters, differently defined within
each of the above mentioned stress subspaces.
Assuming Poisson’s ratio to be constant, this continu-
ity condition can be expressed by

Gryczmański-Uliniarz’s proposal has been imple-
mented by Uliniarz in the Z_SOIL 7.32 FEM com-
puter code. Fig. 20 presents an essential effect of
improvement of MCC by its combination with the
Fahey-Carter’s model on the run of foundation “load
-settlement” curve, particularly for small and medi-
um load values and for heavy overconsolidation.
Biały [5] applied the model proposed by Gryczmański
and Uliniarz [19] to the FEM analysis of the large and
complex “cooling tower – subsoil interaction” problem.
Theoretical responses to loading obtained in [5] exhib-
it a good qualitative agreement with the results of
Burland’s field investigations [7]. An example of a fair-
ly good agreement between the FC+MCC model pre-
dictions and the results of the measurement of the real
cooling tower settlement is quoted after [5] in Fig. 21.
The similar idea of incorporating the empirical for-
mulas into the MCC equations has been implement-
ed independently by Jardine et al. [30], [31].

However, unlike Fahey-Carter’s proposal, their
description of tangent bulk and shear moduli has the
form of a rather complex dependence on volumetric
and distortional strains, including trigonometric func-
tions of logarithmic arguments.
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Figure 19.
Graphic representation of FC+MCC model in the p’–q space
(after [19])

Figure 20.
Comparison of the theoretical load – settlement characteris-
tics for original and improved Modified Cam Clay (OCR = 5
and 20) – after Gryczmański and Uliniarz [19])

Figure 21.
Predicted and measured settlement of the cooling tower
(after Biały [5])

(15)
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where

j = 1,2.
The physical interpretation of some parameters
occurring in (16-19) is shown in Fig. 22. Despite var-

ious simplifications in the formulation of boundary
value problems, not to mention those in the descrip-
tions of the tangent bulk and shear moduli in equa-
tions (16-19) FEM analyses performed by Jardine et
al. [31] exhibited an astounding agreement of the pre-
dicted and measured displacements of eight different
civil engineering structures in England (six of them
have been quoted in Fig. 23).

5. KINEMATIC HARDENING ELASTO-
PLASTIC MODELS ACCOUNTING FOR
SMALL STRAIN SOIL BEHAVIOUR
The conceptual and experimental base for the models
reviewed in the present section were investigations con-
cerning the nature of stiffness changes with increasing
load, mainly comprehensive studies carried out by
Jardine [27]. At this point, it is worth recapitulating the
most important properties of overconsolidated soil
behaviour which have been observed by Jardine in the
range of small to moderate deformations:
1) soil’s response to loading is generally inelastic and

stress path dependent, except a very small linear
elastic region round a stable stress point;

2) there exists an intermediate (adjoining the elastic
region) zone where soil’s behaviour is of the hys-
teretic type and dependent on recent stress histo-
ry, i.e. on the most recent loading path previous to
the current state;

3) inelastic stiffness decreases significantly with
stretching of any considered loading path, starting
from the stable stress point and continuing until
the stress reversal happens or the bounding sur-
face is reached;

4) while the stress reversal takes place at any point of
the loading trajectory, the stiffness at this new sta-
ble point reaches its maximum. Around this point,
the small linear elastic region and the intermediate
zone II of reversible hysteretic soil’s behaviour,
dependent on recent history form. The stiffness
decreases when stresses from the new stable point
are withdrawn.

The last observation justifies the concept of the kine-
matic nature of the overconsolidated soil stiffness
and raises the possibility of application of elasto-
plastic kinematic hardening soil models which are
valid in the whole admissible stress space (except for,
at most, a very small linear elastic area).
The incremental matrix equation of hypoelasticity (4)
for the overconsolidation subspace must therefore be
now extended to
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Figure 22.
Physical meaning of parameters in Eq. 16÷19

Figure 23.
Displacements predicted using the hybrid model proposed by
Jardine et al. [31] against displacements measured for six
objects in England (after [31])

(16)

(17)

(18)

(19)
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��'= Dep·�� (20)
where the elasto-plastic matrix Dep

Eq. 21 includes the following vectors and scalars:
– the unit vector nF normal to the bounding surface
F=0

where aF is the gradient of the bounding surface, and

– the norm (the length in the stress space) of the
gradient vector

– the hardening modulus KP (a general approach)

KP = KFR + Kint (23)

In Eq. 23 KF denotes the hardening modulus at the
reflecting point on the bounding surface, Kint – the
increment of the hardening modulus between the
current stress point P and the reflecting point R.
Here, some explanatory comments may prove help-
ful. The subscripts F and G in Eq. (21) relate the unit
normal vectors and matrices to the bounding surface
F = 0 and to the corresponding plastic potential one
GP = 0 respectively. Most often, surfaces F = 0 and
GP = 0 are assumed to be identical (F = 0) (GP = 0),
which implies the plastic flow rule associated with the
bounding surface. For description of elasto-plastic
behaviour in the overconsolidation area more char-
acteristic surfaces (yield, history, or loading and
stress reversal ones) are usually used. Beside the
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Figure 24.
Radial mapping rule in NAHOS, a) mapping straight line, b) stress reversal (sharp turn of a stress path)

Figure 25.
Functioning of the radial mapping rule for a complex stress
path

Figure 26.
The standard bounding surface for NAHOS

(21)

(22)



S T A T E O F T H E A R T I N M O D E L L I N G O F S O I L B E H A V I O U R A T S M A L L S T R A I N S

Eqs (20)÷(23) related to the bounding surface, ana-
logical equations should refer to every surface on
which the current stress point is situated.
In principle, the soil models developed within the
kinematic hardening approach, which are to describe
realistically small strain phenomena, should take into
account all four above-mentioned properties of soil
behaviour in the overconsolidation states.
Nearly all of the recently proposed concepts satisfy
the above demand. First of all, the three – surface
elasto-plastic kinematic hardening models come to
mind. However, to achieve a desirable simplicity and
computation efficiency, some requirements, such as
the existence of two separate zones (I i II) can be
neglected as less important for practical purposes.
The remaining requirements have been fulfilled by
the one-surface elasto-plastic kinematic hardening
model NAHOS developed at the Geotechnical
Department of the Silesian Technical University in
the period of 1997-2004 by the research team of
Jastrzębska, Sternik and Łupieżowiec, under
Gryczmański’s conceptual leadership. The concepts
and results of investigations have been presented in
the research reports [20], [21], in the PhD theses [32],
[54], [37] and in the contributions to international
conferences [34], [35].
The prototype of NAHOS was the author’s proposal
[18] which represented the Bounding Surface Soil
Plasticity (BSSP) family of models originated by
Dafalias and Herrmann [11]. It was specified by
adapting the empirical formula for tangent Young
modulus derived by Jardine et al. [30].
The proper NAHOS is an elasto-plastic kinematic
hardening model combining certain elements of
Dafalias’ BSSP [11] and Hashiguchi’s [24] “subload-
ing surface” models. From the first of them NAHOS
borrowed the reduction of the linear elastic area to
the point (the pole of elasticity) and the general idea
of a “radial mapping rule”. The latter is the method
of evaluation of the hardening modulus field in the
overconsolidation subspace (within the bounding sur-
face) using an interpolation technique. The concept
consists in extending of the straight line connecting
the pole of elasticity S with the current stress point P
to the intersection with the bounding surface (to the
reflecting point R) – Fig. 24a. In the original BSSP
[11] the pole of elasticity is fixed at the origin of the
coordinate system.
The modification of the radial mapping rule, follow-
ing Hashiguchi’s concept [24], concerns positioning
of the pole of elasticity. In any state of loading of soil

element the pole of elasticity is a stable stress point
S1, taking a given place in the overconsolidation sub-
space until the stress reversal (sharp turn of stress
path) occurs. Then, the pole of elasticity moves to the
stress reversal place and becomes a new stable stress
point S2, and the starting point for radial mapping of
a new straight line (Fig. 24b) Fig. 25 shows the func-
tioning of the radial mapping rule for the case of a
complex stress path.
When a stress path reaches the bounding surface and
penetrates its exterior, NAHOS behaves as an elasto-
plastic isotropic hardening model. Then, the closed
bounding surface undergoes expansion or contraction,
together with changes of hardening parameters. The
natural selection of a constitutive law for soils are
models with volumetric hardening. This places them
within the critical state soil mechanics (e. g. [48]).
The original version of NAHOS [20], [21] adapts the
Modified Cam Clay yield locus as the bounding sur-
face (Fig. 26). Its equation has the well known form

F = q2 + M2 p' (p'-p'c) = 0 (24)

The evolutions of the bounding surface (expansion or
contraction) are governed by changes in a permanent
part of the void ratio or of the volumetric strain,
according to the isotropic hardening law

in which pc0’ is the overconsolidation pressure at the
beginning of the loading process. The unit normal
vector nFP at any current stress point P is taken as
equal to the corresponding vector nFR at the reflect-
ing point on the bounding surface. It follows from the
assumption of the existence of the virtual loading
surface containing the current stress point and
homotetic to the bounding surface. Thus, nFP = nFR

while

The analytical expression of the radial mapping rule
for NAHOS has the general form

where
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The form of the hardening function H for the first
version of NAHOS (cryptonym NAHOS 1)

is an attempt of own contribution of the research
team to the small strain stiffness description.
The problem of evaluations of the constants C and µ,
as well as remaining parameters related to the
bounding surface and the isotropic hardening law
(see Fig. 27), has been solved by Jastrzębska [32].
To complete the model description an algorithm of
determining the reflecting point coordinates must be
given. An ingenious, simple way of solving this prob-
lem, based on the homotetity of the virtual loading
surface and the bounding one, has been given by
Sternik [54]. The algorithm has the form

where

Sternik has also presented a more general equation
of the bounding surface accounting for various ellip-
soidal shapes controlled by the parameter R and his
own computer FEM implementations of the model
[54]. As a benchmark of simulative abilities of
NAHOS, comparison of the theoretical effective
undrained stress paths in p’q space with the triaxial
tests results on kaolin samples is presented in Fig. 28.
This comparison has been carried out by Sternik [54]
who used the results of Kaliakin and Dafalias tests.
The compared theoretical and experimental curves in
Fig. 28 exhibit a good agreement.
As has already been mentioned, the three-surface elas-
to-plastic kinematic hardening models constitute the
main stream in the development of modeling of soil
behaviour at small strains. The first of them has been
proposed by Stallebrass [51], [53]. The incremental
constitutive equations of the model have been formu-
lated in the triaxial p’q space using the form

where K’c, G’c , J’1c, J’2c are the tangent bulk, shear
and cross-coupling shear and volumetric effects mod-
uli [3]. There are three threshold surfaces in the
model which play the key part for its evaluation.
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(29)

(30)

(31)

(32)

(33)

(34)

Figure 27.
Parameters specifying the isotropic hardening law in
NAHOS

Figure 28.
Comparison of undrained effective stress paths simulated by
NAHOS with results of Kaliakin and Dafalias’ triaxial tests
(after Sternik [54])

Figure 29.
Three threshold surfaces of three surface Stallebrass’ model
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These are (Fig. 29):
– the bounding surface F(p’, q, p0) = 0 enclosing the

admissible stress space and separating the normal
consolidation and overconsolidation soil states
(specified when describing NAHOS)

– the history surface fh ( p’, q, p’b, qb ) = 0 enclosing
the zone II discussed in Chapt. 3 within which soil
behaviour is of the hysteretic type and is very sensi-
tive to recent loading history,

–

– the yield surface f ( p’, q, p’a, qa ) = 0 enclosing the
zone I discussed in Chapt. 3 within which soil
exhibits cross anisotropic linear elastic properties

In Eqs (35) – (37) p0 denotes the mean stress coordi-
nate of the centre of the current bounding surface,
p’a, qa – the coordinates of the centre of the current
yield surface and p’b, qb – the coordinates of the cen-
tre of the current history surface (Fig. 29.). The sym-
bol S stands for the ratio of the yield surface diame-
ter to the history surface diameter, and T is the ana-
logical relation between the bounding and history
surfaces.
The plastic parts of the volumetric and shear strains
in the triaxial p’q space can be described by the fol-
lowing general formula

The isotropically-kinematic hardening rule predicts
the movements of the centers of threshold surfaces of
the model. These shifts are associated with the stress
path induced by external forces transmitted from a
structure at a given point of a soil body. The thresh-
old surfaces must not intersect at any moment of the
loading process. They may be, at most, internally tan-
gent. Independently of that, during the whole active
loading process outside the elastic area, the current
stress point must remain on the threshold surface,

and on all nested surfaces, until the unloading
process occurs. The above conditions must be ful-
filled by the constitutive relations written below.
The yield surface at the current stress point A has the
same outward normal as the history surface at the
conjugate stress point B (Fig. 30). The rule of trans-
lation between points A and B takes the form

where R is an unknown coefficient, and 	 is the vec-
tor connecting the points A and B

The expansion or contraction of the yield surface
related to plastic straining necessitates the correction
of the translation rule

Finally, the translation rule presents itself as follows

Now, it is still necessary to determine the coefficient
R making use the consistency condition related to the
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Figure 30.
Illustration of functioning the translation rule

(35)

(36)

(37)

(38)

c

(39)

(40)
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yield surface

Hence

Now, starting from general relations (38), and taking
into account the Butterfield’s compressibility law [8]

having computed the gradients of the yield surface
(37) and having performed suitable transformations,
the following matrix formula for the increments of
plastic volumetric and deviatoric strains can be
obtained

where the final form of the equation describing the
hardening modulus presents itself as follows

This formula includes two additional components
added in order to eliminate infinite strains predicted
at certain points of the yield and history surfaces as
well as unstable regions of these surfaces.

Once the stress path has reached the next kinematic
surface, i.e. the history one, at the point B (Fig. 30),
the yield surface joins with the history surface. They
move together in a similar way as previously
described, but now the centre of the history surface
translates along the vector connecting the current
stress point on this surface to the conjugate stress
point C on the bounding surface. Finally, when the
stress path penetrates the exterior of the latter, the
3-SKH is identified with Modified Cam Clay, and all
three surfaces join together. Now, the unloading
stress path begins to drag the yield and then the his-
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(43)

(44)

(45)

(46)

(47)

(48)

Figure 31.
Comparison of “load-settlement” curve predicted by using
3-SKH model with results of centrifuge tests

Figure 32.
Load – settlement characteristics on various depths – results
of trial plate loading tests (after Burland [7])

Figure 33.
An example of the steep drop of stiffness resulting in the
highly progressive increase in settlement
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tory surface back, in the direction opposite to that
shown in Fig. 30. It is worth emphasizing the ability of
the model to simulate correctly the effects of the
recent history i.e. the rotation from the previous
stress path to the current one. This ability is achieved
through the concept of an additional history surface
(see Fig. 30).
An example of the simulative ability of the 3-SKH
model has been presented in Fig. 31. It shows how
the model’s numerical simulations fit well with results
of the centrifuge tests (the case of the test 3).
Two other proposals of three-surface models should
also be mentioned. First of them, developed by
Puzrin and Burland [45], is based, like the Stallebrass’
proposal [51], [53] discussed previously, on the gen-
eral Jardine’s concept of zones of soil behaviour at
small strain. Puzrin and Burland also introduce
regions: LER (linear elastic region), and SSR (small
strain region) corresponding to zones I and II. The
difference between Puzrin-Burland’s approach and
Stallebrass’ proposal consists essentially in different
conceptions of zone II. Puzrin and Burland assume a
nonlinear elastic response of the soil to strains in this
region making use of the logarithmic interpolation
law [44] developed by them earlier. Other character-
istic features of the discussed model are a cross
anisotropy of soil within LER and ellipsoidal bound-
aries of zones. Authors evaluate and verify their pro-
posal on the basis of experimental data for
Bothkennar clay [50] exhibiting good agreement of
compared results.
The direct improvement of 3-SKH model is the
McDowell and Hau’s contribution [38].
These authors introduce to the Stallebrass’ proposal
the non-associated flow rule and their own shape of
deviatoric contour of failure surface. McDowell and
Hau also prove that their innovations prevent over –
predictions of the coefficient of earth pressure at rest
for normal consolidation and enable more realistic
predictions of responses to cyclic loading.

6. CONCLUSION
The present overview does not exhaust this very
broad subject matter. Some experimental results
and relevant constitutive models have been merely
mentioned. The wide interest of geotechnical
researchers and engineers in the issues of soil
behaviour at small strains stems from scientific aspi-
rations to explore further these exceptionally com-
plex phenomena. The main reason for that interest
is, however, the great practical importance of strong
physical non-linearity which manifests itself by an
abrupt drop of soil stiffness.
There are several very significant effects of the
above mentioned property. The first of them, and
the most important one, is the influence of dis-
cussed non-linearity on the foundation settlement.
Some important experimental data are included in
the Burland’s study [7].
In Fig. 32 the load – settlement curves from trial plate
loading tests presented by Burland [7] are quoted.
The mentioned non-linearity manifests itself by the
ratio of settlement measured to that predicted with-
in the linear elasticity. If an approximate range of the
linear elasticity is evaluated as 300 kPa, the minimal
value of ratio amounts to about 0.3.
Fig. 33 presents an example of the abrupt drop in
stiffness within a narrow range of moderate strain.
This phenomenon results in the progressive increase
in settlement within the above mentioned range.
Another example of small strain effects can be the
intensity of the reduction in the vertical displacement
of subsoil beneath the testing plate with the increas-
ing depth. It follows from Fig. 32 that on the depth
equal to 0.6 of the plate diameter the measured dis-
placement makes ca 0.36 of settlement of the plate,
while the corresponding ratio predicted for the linear
elastic halfspace amounts to 0.62, i.e. about 1.7 times
more. The effect of non-linearity is therefore the
more pronounced reduction in the vertical dis-
place,ment with increasing depth. This effect is par-
ticularly evident under diaphragms, such as geogrids
or geomattresses. An effective solution to these and
other practical boundary value problems which
accounts for the effects of the small strain nonlinear-
ity is yet to be found.
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