
1. INTRODUCTION
Reinforced concrete beams and slabs consist of pre-
fabricated element and concrete topping cast in situ
[1]. Prefabricated element incorporating main rein-
forcement functions as a stay-in-place formwork.
Vertical reinforcement joins precast element and con-
crete topping. The reinforcement in slabs has a form
of truss bracing [1] and in case of composite beams a
form of stirrups.

Stiffness of composite reinforced concrete structures
loaded with bending moment is determined as for
monolithic elements, unless a delamination occurred
in joint surface [2]. Stiffness of structure changes as an
effect of delamination between prefabricated element
(bottom layer of concrete) and concrete topping (top
layer of concrete).
The paper assumes a model of work of joint surface of
two layers of concrete. Equations of free vibrations of
composite reinforced concrete structure loaded with
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A b s t r a c t
The subject of analysis is reinforced concrete composite structure. In the paper a model of joint surface between two con-
cretes is assumed. According to this model, when the boundary value of horizontal stresses is achieved, displacement in the
joint surface appears. Simultaneously frictional stresses in the joint surface appear. Further increase of vertical force does
not result in increase of frictional stresses. Frictional stresses are still equal to boundary value of horizontal stresses.
Based on this model equation of free vibration of concrete structure is built. In the discussed model frictional forces in joint
surface as well as material damping is taken into consideration. Numerical testing of the model shows that delamination in
joint surface affects frequency of vibration as well as damping of vibration of composite concrete-concrete construction.

S t r e s z c z e n i e
Przyjęto model pracy powierzchni zespolenia w zespolonych konstrukcjach betonowo-betonowych obciążonych momentem
zginającym i siłą poprzeczną. W modelu tym założono, że po wystąpieniu naprężeń rozwarstwiających o wartości granicznej
w powierzchni zespolenia następują przemieszczenia. Przemieszczeniom tym towarzyszy występowanie naprężeń tarcia,
których wartość jest równa naprężeniom granicznym. Naprężenia tarcia powodują tłumienie drgań swobodnych kon-
strukcji. Ponadto drgania swobodne są tłumione przez niesprężyste mikroodkształcenia betonu uwzględnione w badanym
modelu jako tłumienie wiskotyczne. W oparciu o powyższe założenia zamodelowano drgania swobodnie podpartej płyty żel-
betowej jako układu o jednym stopniu swobody. Zdefiniowane zadanie zostało rozwiązane w sposób analityczny w przypad-
ku szczególnego układu danych. Rozwiązanie dla dowolnego układu parametrów przeprowadzono w sposób numeryczny.
Uzyskane wyniki odniesiono do drgań płyty monolitycznej. Wykazano, że występowanie rozwarstwienia w konstrukcji wpły-
wa na zmianę okresu drgań własnych oraz na tłumienie drgań. Powyższe spostrzeżenie może być wykorzystywane do określa-
nia stanu powierzchni zespolenia w zespolonych konstrukcjach betonowo-betonowych na podstawie pomiaru drgań swo-
bodnych.
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bending moment were calculated on the basis of this
model and an assumption of constant, elastic features
of two layers of concrete.

2. DEFINITION OF THE MODEL
The considered structure consists of two combined
layers of concrete: the lower layer of hd height and
the upper layer of hg height (Fig. 1a). The structure is
vertically loaded. Reactions to this load are: trans-
verse force V and bending moment M. The transverse
force causes delaminating stress τ in joint surface,
which according to code [2] and [3], in case of com-
bined concrete structures, is related to transverse
force in equation

where b is the width of cross-section and z is an arm
of internal force.
It is important to mention, that in case of elastic
structures delaminating stress τ is expressed by for-
mula τ =VS/Ib, where S is static moment of part of
the section and I is moment of inertia of the whole
section. In this paper, referring to concrete struc-
tures, formula (1), derived in [3], is obligatory.
The model assumes a limiting value of horizontal
stress τmax in joint surface, which is caused by trans-
verse force Vroz. Delamination occurs when the trans-
verse force reaches value Vroz. The effect of the
delamination is a displacement of prefabricated ele-
ment in relation to concrete topping. The model
assumes that friction stress equal to limiting horizon-
tal stress τmax occurs when the force in joint surface
exceeds Vroz (Fig. 1b). This stress can be maintained
thanks to normal stress in joint surface, compensated
by vertical reinforcement. Reduction of transverse
force to below Vroz value entails horizontal stress
coming back to the value resulting from equation 1
(Fig.1b):

Assumed simplified model omits issue of hysteresis of
the system and residual stress in joint surface resulting
from the strain relief. Moreover, it assumes that the
concrete of both bottom and top layers is linear-elastic
material characterised by elasticity modulus Ec.

2.1. Model of damping
It is assumed that dissipation of energy occurs as an
effect of work of frictional stress τmax in displacement in
joint surface. The work is performed on condition that

is true.
Stresses τmax are acting on arm ed in relation to bot-
tom layer of concrete and on arm eg in relation to top
layer of concrete (Fig.1a). These stresses may be sub-
stituted with uniformly distributed bending moment,
whose value is represented by (Fig. 1c)

Further analysis is restricted to composite simply-
supported element of l span (Fig. 1c). Deflection of
delaminated element in the centre of the span,
caused by the bending moment (4) is equal

where Id, Ig are respectively inertia moments of bot-
tom and top layers of concrete. Next part of the
analysis will concern a one freedom degree system.
Displacements in the system will be represented by
vertical displacements of the centre of span of simply
supported element. The value of substitute force R,
replacing the action of stress τ
was calculated from equality of displacements in the
centre of span two elements: presented in Fig 1c and
Fig. 1d. In the above formula h is a sum of heights hd

and hg. Force R will occur on condition that deflec-
tion y exceeds value equal to transverse force causing
displacement in joint surface

Force R causes dissipation of energy and because of
this it is called damping force.
It is also assumed that dissipation of energy occurs in
both top and bottom layers of concrete as an effect of
non-elastic micro-strain of the material. Damping relat-
ed to non-elastic micro-strain occurs irrespectively of the
value of transverse force V. The model assumes that the
damping meets conditions of viscous damping, i.e. is pro-
portional to velocity �y. Coefficient of viscous damping c
is coefficient of proportionality.
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(horizontal stress)

(frictional stress).



2.2. Structure model as a one degree freedom system
Simply supported composite element is modelled as a
one-degree freedom system. Equivalent mass [4]

was calculated on the basis of equality of kinetic ener-
gy of simply supported beam, whose span is l, cross
section b/h, mass density ρ (Fig.2a) and kinetic ener-
gy of system, which is concentrated mass attached to
the centre of span of weightless beam (Fig.2b).
Analysed system is characterised by two types of stiff-
ness: kmon of non-delaminated element and kroz of
delaminated element (Fig.2c)

In the above formula I is moment of inertia of cross-
section b/h. As it was mentioned before, damping
force R occurs on condition that deflection exceeds
yroz value. Moreover, sense of the vector of damping
force R is always opposite to sense of the vector of
system velocity �y, (Fig. 2d). This means that damping
force R is a function of position and stiffness of the
system, as in the formula
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Figure 1.
Assumptions of the model of vibrations damping a) friction-
al stress in joint surface b) horizontal stress (τ) and fric-
tional stress (τmax) as a function of transverse force c) fric-
tional stress interaction as a uniformly distributed bending
moment m, d) damping force R equivalent to frictional
stresses interaction

(8)

(9)

(10)

Figure 2.
a) analysed system, b) substitute system, c) discretely vari-
able stiffness of the system in relation to value of transverse
force, d) damping elements in the system
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Remaining forces interacting with the system are
elasticity force equal

and force of viscous resistance

According to d’Alembert principle the sum of the
above mentioned forces (10÷12) is equal to force of
inertia. Thus the equation of system has the following
form

Further transformation of equation (13) is conducted
according to the method universally employed for
solving linear differential equations of second degree
[5]. Accordingly, if the above equation is divided by m
and if we assume

the following formula is obtained:

where

3. ANALYTIC SOLUTION OF SIMPLI-
FIED MODEL
Solution of equation (15) will be conducted for
numerical values in the next part of the paper. Below
the equation is solved analytically, based on assump-
tion that

This means that delaminating does not occur under

any loading. In such situation equation (10), with
temporary assumption of sign(�y) = -1, is non-
homogenous linear differential equation with con-
stant coefficients

The solution of homogenous equation (i.e. equation
obtained by equating left member of equation (18)
with zero) is [6]

Solution in stationary state of non-homogeneous
equation (18) (in this case t=∞) will correspond to
the right member of equation (18). Thus the particu-
lar differential of non-uniform equation (18) was
determined by method of prediction, assuming that it
is a constant function in the form

After determining consecutive derivatives and substi-
tuting them to equation (18) C3 = 1 was obtained.

The final solution of equation (18) is function

Assuming initial conditions

constants of solution (20) are determined:

Substitution of new constants

The solution (20) is transformed to the form

where
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The above equation results in value tgφ → ∞ , which
means that, when viscous friction n=0, the motion of
the system is defined by equation

When ω0t = π, then velocity �y = 0, which means that
the system reaches extreme position A1 (Fig. 3a).
Deflection of the system is then

while in extreme position A2 deflection of the system
is

Amplitude of damped vibrations is limited by a line
represented by equation

while angular frequency of free vibrations is ω0.
After the vibrations faded the system, in general,
does not accept neutral position (Fig. 3a).
When the damping force R=0, a generally known
formula for movement of the system with one free-
dom degree with viscous damping at initial conditions
(21) is obtained [7], [8]:

where

Graphic interpretation of the solution is presented in
Fig. 3b. In this case the system in stationary state
accepts neutral position.
Fig. 3c presents movement of the system in which the
damping is composition of damping presented in Fig.
3a (damping in form of constant damping force) and
Fig. 3b (viscous damping).
In order to determine value of parameter n, which
describes viscous damping, the values of logarithmic
decrement of damping Δ were assumed according to
[6]. It is generally known that

According to (30) and Fig. 3b we may assume that

As an effect of transformations formula

was obtain.

The analysis of vibrations of simply supported slab,
made of concrete, whose elasticity modulus
Ec=27GPa, specific gravity ρ=25kN/m3, cross-sec-
tion b/h 0.18/0.59m, span l=2m and initial conditions
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(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

Figure 3.
Solution of system (15) a) solution for n=0 and R≠≠0, 
b) solution for n≠≠0 and R=0, c) solution for n≠≠0 and R≠≠0 
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has been presented below.
Assumption (17) is in force, which means, that
analysed structure is a monolithic structure.
Determined stiffness of the system for the above data
is k=56.45MN/m, angular frequency of free vibra-
tions according to (14) is ω0=420.27rad/s and substi-
tute mass according to (8) is m=262.99kg.
Coefficient n, determined from formula (32) based
on assumption that Δ=0.15 [6] is 60.74s-1. Fig. 4a pre-
sents solution of (18) at initial conditions (33)

obtained for constant damping force R=1.06kN and
coefficient of viscous damping c=0. Natural period is
14.95ms and temporal course of vibration is limited by a
line represented by equation y=0.001-0.006117t.
Fig. 4b presents solution of (18) at initial conditions (33)
at n=60.74s-1 and R=0. Natural period of the system is
15.11ms and is greater than vibrations of the system
with damping by constant force R. The vibrations are
represented in equation

y = 0 . 0 0 1 0 1 0 6 e - 6 0 . 7 3 8 ts i n ( 4 1 5 . 8 6 t + 0 . 4 5 3 8 π ) .
The next point of the paper will make use of the fact
that the above presented solution corresponds to
simply supported monolithic reinforced concrete slab
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(33)

Figure 4.
Results of analythical solutions of equation (18) at assumption yroz=∞ a) solution for n=0 and R≠≠0, b) solution for n≠≠0 and R=0, 
c) solutionfor n≠≠0 and R≠≠0,  d) solution for n=0 and R=0   
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b/h/l 0.59/0.18/2m unbalanced by a 1mm displace-
ment in the middle of its span. 
Fig. 4c presents solution of equation (18) at identical
initial conditions, constant damping force R=1.06kN
and parameter of viscous damping n=60.74s-1.
Natural period of this system is equal to natural peri-
od of vibration at viscous damping 15.11ms.
Fig. 4d represents solution of vibrations of the slab
without damping, at assumption that R=0 and n=0.
The natural period is equal to natural period of vibra-
tion with damping in the form of constant damping
force, which is 14.95ms.

4. NUMERICAL SOLUTION OF THE
MODEL 
Numerical solution of equation (15) at initial condi-
tions (33) [9], [10], [11] is presented below. The sub-
ject of analysis was a composite slab whose width was
b=0.59m, height of bottom layer hd=0.07m, height of
top layer hg=0.11m and span l=2m. Stiffness of the
slab after delamination is kroz=13.33MN/m and
before delamination kmon=46.45MN/m. Angular fre-
quency of vibrations and parameters corresponding
to viscous damping determined from formulas (16)
and (32) are respectively: ω0roz=225.16rad/s,
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Figure 5.
Numerical solution of equation (15) with initial conditions (33) on the assumption that yroz=0.32 mm, a) solution for n=0 and R≠≠0,
b) solution for n≠≠0 and R=0, c) solution for n≠≠0 and R≠≠0, d) comparison of solution in Fig. 4b (vibrations of monolithic structure)
with solution of the equation in Fig. 5c (vibrations of composite structure) 



ω0mon=420.27rad/s, nroz=32.54s-1, nmon=60.74s-1. It
has to be emphasised that parameters of not delami-
nated slab, that is parameters with index “mon”, coin-
cide with parameters of the slab described in previous
section, in which the problem was solved analytically
(case of monolithic structure).
Numerical calculations were carried out for two val-
ues of maximum stresses τmax=0.1MPa andτmax=0.01MPa. These values correspond respectively
to two maximum values of deflection: yroz=0.32mm
and yroz=0.032mm, (determined from formula (7)),
at which delamination occurs.

The calculations were carried out for three different
variants of damping at each value of maximum stressτmax and presented in Fig. 5 (τmax=0.1MPa) and
Fig. 6 (τmax=0.01MPa).

The following issues were considered in those pictures:
a) vibrations with damping in the form of constant

damping force and without viscous damping (Fig.
5a and 6a), 

b) damping in the form of viscous damping; friction
in joint surface omitted (Fig. 5b and 6b),

c) systems in which combined damping by force R
and viscous damping occur (Fig. 5c and 5c). This
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Figure 6.
Numerical solution of equation (15) with initial conditions (33) on the assumption that yroz=0.032 mm, a) solution  for n=0 and R≠≠0,
b) solution for n≠≠0 and R=0, c) solution for n≠≠0 and R≠≠0, d) comparison of solution of equation (16) at n≠≠0 and R≠≠0 (vibrations of
composite structure) with solution of equation in Fig. 4b (vibrations of monolithic structure) 
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case corresponds to vibrations of composite struc-
ture in which damping in joint surface occurs after
delamination.

Fig. 5d and Fig. 6d compare obtained results corre-
sponding to case c) with corresponding monolithic
model, whose solution is represented in Fig. 4b.
Analysis of results a), b), c) in Figs. 5 and 6 show two
phases. First phase corresponds to situation, when
amplitude of vibration is greater than value yroz.
Second phase corresponds to situation, where ampli-
tude of vibrations decreased below yroz.

Diagrams corresponding to damping by constant
force (Fig. 5a and Fig. 6a) show that in the first phase
vibrations fade in a way similar to that presented in
Fig. 4a. Amplitudes of vibrations cannot be limited by
a straight line which is an effect of change of systems
stiffness when it crosses position ±yroz. In consequent
courses the system travels along different time peri-
ods in two ranges of stiffness kroz i kmon.
Consequently, period of vibration of the system is not
constant in this range. After limiting the amplitude of
vibration to yroz the system vibrates as a system with-
out damping.
Note that the period of vibrations in Fig. 5a changed
considerably. In the first phase it is around 27.55ms,
omitting small changes mentioned above; in the sec-
ond phase – phase of free non-damped vibrations, it
is 14.95ms. The difference results from the fact that
stiffness of the system corresponds to greater stiff-
ness kmon in the second phase. 

In case of viscous damping, with omission of constant
force damping (Fig. 5b, Fig. 6b), the vibrations fade
asymptotically. Note that the period of vibrations in
the first phase in Fig.5b is 19.95ms and is smaller than
analogical period of vibrations in Fig. 6b, which is
28.02ms. This results from the fact that the system
presented in Fig. 6b, for which yroz=0.032mm, stays
longer in area corresponding to stiffness kroz.

Temporal courses of vibrations of systems in Fig. 5c
and 6c are similar to those in Fig. 4c. This results
from the fact, that with employed assumptions vis-
cous damping has a decisive role in vibrations damp-
ing.
Fig. 5d and 6d allow to compare solutions of vibra-
tion of composite elements to solutions of monolith-
ic elements vibration.
The comparison leads to the following conclusion. In
case of assumed greater value of frictional stress
(τmax=0.1MPa) the fact that the joint surface exists
did not considerably changed the natural period in

comparison to monolithic element. However, it
caused increase of damping in the first phase of
vibration, where the amplitude is greater than yroz.
The vibration fading of composite element, where
the amplitude is less than yroz, and in corresponding
monolithic element proceeds similarly.
In case of assumed smaller value of frictional stress
(τmax=0.01MPa) the vibration of the composite ele-
ment in the first phase, where amplitudes of vibration
are big, fade slower in comparison to monolithic ele-
ment. Simultaneously the period of vibration increas-
es considerably in comparison to monolithic element.
Comparison of lines limiting solution of vibrations in
Fig. 5d and 6d is presented in Fig. 7. The comparison
confirms that, depending on assumed limiting values
of stress τmax, different intensity of dissipation of
energy per unit of time is obtained. Greater dissipa-
tion of energy per unit of time occurs when the value
of stress c is greater. Then the composite structure
loses more energy than monolithic structure. It has to
be emphasised that the natural period of vibration of
composite and monolithic structures does not differ
substantially.
On the other hand, according to the model, in case of
small value of stress τmax the vibrations of composite
structure fade slower than vibration of monolithic
structure. In such situation considerable increase in
period of vibration is observed in comparison to
monolithic structure. 
Based on the presented observations, author of the
paper is conducting laboratory experiments, whose
aim is to diagnose the state of composite structure on
the basis of measurement of free vibrations.
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Figure 7.
Comparison of lines limiting vibrations of composite struc-
ture with viscous damping and frictional stress τ max=0.1MPa and τ max=0.01MPa to a line limiting vibra-
tion of monolithic structure



5. CONCLUSIONS
The paper defines model of vibrations of composite
reinforced concrete structure. Damping of vibrations
in joint surface is caused by frictional stress thanks to
vertical reinforcement. Damping resulting from
microdeformations of concrete has been modelled as
viscous damping. Defined model has been solved
analytically and numerically for two different values
of frictional stress in joint surface. Moreover, vibra-
tions of monolithic model (without joint surface)
have been analysed. As an effect of the analysis the
following conclusions may be proposed: 
– greater dissipation of energy occurs when the value

of frictional stress is greater, while natural periods
of composite and monolithic structures do not dif-
fer substantially, 

– assuming small value of frictional stress, vibrations
of composite structure fade slower than vibrations
of monolithic structure, the natural period of vibra-
tions of composite structure increase in compari-
son to monolithic structure.

Above presented observations may serve as a basis
for diagnosis of state of composite structure on the
basis of measurement of free vibrations.
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