
1. INTRODUCTION
A size effect phenomenon (nominal strength varies
with a characteristic size of a structural member) is an
inherent property of the behaviour of many engineer-
ing materials. In case of concrete materials, both the
nominal structural strength and material brittleness
(ratio between the energy consumed during the load-
ing process after and before the stress-strain peak)
always decrease with increasing element size under
tension [1]-[3]. The results from laboratory tests which
are scaled versions of the actual structures cannot be
directly transferred to them.
Two size effects are of a major importance in quasi-
brittle and brittle materials: energetic (or determinis-

tic) and statistical (or stochastic) one (the remaining
size effects are [3]: boundary layer effect, diffusion
phenomena, hydration heat or phenomena associated
with chemical reactions and fractal nature of crack
surfaces). According to Bazant and Planas [3] and
Bazant [4] the deterministic size effect is caused by the
formation of a region of intense strain localization
with a certain volume (micro-crack region – called also
fracture process zone FPZ) which precedes macro-
cracks. The nominal structural strength which is sensi-
tive to the size of FPZ cannot be appropriately esti-
mated in laboratory tests, since it differs for various
specimen sizes. Strain localization volume is not negli-
gible to the cross-section dimensions and is large
enough to cause significant stress redistribution in the
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A b s t r a c t
The numerical FE investigations of a deterministic and stochastic size effect in unnotched concrete beams of similar geom-
etry under three point bending were performed within elasto-plasticity with non-local softening. Deterministic calculations
were performed with the uniform distribution of a tensile strength. In turn, in stochastic calculations, the tensile strength
took the form of spatially correlated random fields described by a truncated Gaussian distribution. In order to reduce the
number of stochastic realizations without losing the calculation correctness, Latin hypercube sampling was applied. The
numerical outcomes were compared with the size effect laws by Bazant.

S t r e s z c z e n i e
Przeprowadzono analizę numeryczną MES deterministycznego i statystycznego efektu skali w belkach betonowych geome-
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structure and associated energy release. The speci-
men strength increases with increasing ratio lc/D
(lc – characteristic length of the micro-structure influ-
encing both the size and spacing of localized zones,
D – characteristic structure size). In turn, a statistical
(stochastic) effect is caused by the spatial variabili-
ty/randomness of the local material strength. The
first statistical theory was introduced by Weibull [5]
(called also the weakest link theory) which postulates
that a structure is as strong as its weakest component.
The structure fails when its strength is exceeded in
the weakest spot, since stress redistribution is not
considered. The Weibull’s size effect model is a
power law and is of particular importance for large
structures that fail as soon as a macroscopic fracture
initiates in one small material element. It is not how-
ever, able to account for a spatial correlation between
local material properties, it does not include any
characteristic length of micro-structure (i.e. it ignores
a deterministic size effect) and it underestimates the
effect of small- and intermediate-sizes. Combining
the energetic theory with the Weibull statistical theo-
ry, a general energetic-statistical theory was devel-
oped [6]. The deterministic size effect was obtained
for not too large structures and the Weibull statistical
size effect was obtained as the asymptotic limit for
very large structures. In turn, according to Carpinteri
et al. [7], the size effect is caused by the multi-fractal-
ity of a fracture surface only which increases with a
spreading disorder of the material in large structures
(stress redistribution and energy release during strain
localization and cracking are not considered).
In spite of many experiments exhibiting the noticed
size effect in concrete and reinforced concrete ele-
ments under different loading types [8]-[17], the sci-
entifically (physically) based size effect is not taken
into account in a practical design of engineering
structures, that may contribute to their failure [3],
[17]. Instead, a purely empirical approach is some-
times considered in building codes which is doomed
to yield an incorrect formula since physical founda-
tions are lacking.
The goal of our numerical simulations is to deter-
mine in numbers a combined deterministic and sta-
tistical size effect in flexural resistance of unnotched
beams of a similar geometry under quasi-static three-
point bending by using a stochastic enhanced contin-
uum concrete model and to compare results with
existing size effect laws by Bazant [3], [4]. A finite ele-
ment method with an elasto-plastic constitutive
model using a Rankine’a criterion with non-local
softening was used which is suitable to capture strain

localization under tension. Two-dimensional calcula-
tions were performed with four different concrete
beam sizes of a similar geometry. Deterministic cal-
culations were performed assuming a constant value
of the tensile strength. In turn, statistical analyses
were carried out with spatially correlated random
fields reflecting the random nature of a local tensile
strength. The probability distribution of the tensile
strength was described by a truncated Gaussian func-
tion. Random fields were generated using a condi-
tional rejection method [18] for correlated random
fields. The approximated results were obtained using
a Latin hypercube sampling method [19], [20]
belonging to a group of variance reduced Monte
Carlo methods. This approach enables a significant
reduction of the sample number without losing the
accuracy of calculations.

2. SIZE EFFECT LAWS
Two size effects laws proposed by Bazant [3], [4]
(called Size Effect Laws SEL) for geometrically sim-
ilar structures allow for determining their nominal
strength by taking into account the size-scale effect.
There exist three different types of a deterministic
SEL distinguished by Bazant. Type I (Fig.1a) applies
to structures of a positive geometry having no notch-
es or pre-existing cracks for which the maximum load
occurs as soon as the FPZ is fully developed and the
macroscopic crack can initiate. Type II (Fig.1b)
occurs also for structure with a positive geometry but
with notches or large stress-free cracks that grow in a
stable manner up to the maximum load. Type III hap-
pens in structures of an initially negative geometry
where a macro-crack can propagate up to the maxi-
mum load (it is very similar to Type II). The require-
ment of a positive geometry enables to incorporate
the weakest link theory by Weibull. The structures
obeying the size effect of Type I are sensitive to the
material randomness. The nominal strength is strong-
ly affected by the material heterogeneity and decreas-
es with increasing structure characteristic dimension.
For Type II, the effect of the material randomness
can be ignored. The deterministic size effect of Type
I and Type II assumes that the material strength is
bound for small sizes by a plasticity limit whereas for
large sizes the material follows linear elastic fracture
mechanics. The following general analytical formulae
for a deterministic size effect predicted by asymptot-
ic matching were proposed by Bazant [3]
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and

where σn is the nominal strength, D is the character-
istic structure size, lp is the second deterministic char-
acteristic length, fr

∞ , Db and r denote the positive
constants representing unknown empirical parame-
ters to be determined; fr

∞ represents the solution of
the elastic-brittle strength reached as the nominal
strength for large structures, r controls the curvature
and shape of the law and Db is the deterministic char-
acteristic length having the meaning of the thickness
of the cracked layer (if Db=0, the behaviour is elastic-
brittle, Eq. 1). In turn, in Eq. 2, the parameter ft

denotes the tensile strength, B is the dimensionless

geometry-dependent parameter (depending on the
geometry of the structure and crack) and Do denotes
the size-dependent parameter called transitional size
(both unknown parameters to be determined). The
formula represents the full size range transition from
the perfectly plastic behaviour (for D→0, D�lp) to the
elastic brittle behaviour (for D→∞, D>>Db) through
the quasi-brittle one. The second deterministic char-
acteristic length lp governs the transition to plasticity
for small sizes D. The case lp�0 shows the plastic limit
for vanishing size D. This case is asymptotically
equivalent to the case of lp=0 for large D. The asymp-
totic prediction for small and large sizes leads to

The length lp equals

with ηp – the ratio between the maximum plastic and
elastic strength.
In turn, a formula for a coupled deterministic-stochas-
tic size effect law involves both a deterministic scaling
length Db and a stochastic scaling length Lo [21]

where m is the dimensionless Weibull modulus
(shape parameter of Weibull distribution) responsi-
ble for the slope of a large-size asymptote and n is the
number of spatial dimensions in which the structure
is scaled (n=2). Thus, the mean size effect is sepa-
rately divided into a stochastic part and deterministic
one. The parameter Db drives the transition from
elastic-brittle to quasi-brittle and Lo drives it from
constant property to local Weibull via strength ran-
dom field. The simplest choice for analyses is usually
Lo=Db. Equation 5 satisfies three asymptotic condi-
tions: a) for small structures D→0, it asymptotically
reaches the plastic limit (Eq. 3), b) for large sizes
D→∞, it asymptotically reaches the dominating
Weibull size effect with the slope equal to –n/m
(limσN ∞D(-n/m)) and c) for m→∞ and Lo→∞, it is
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Figure 1.
Size effect laws by Bazant [4] in logarithmic scale with σσn –
nominal strength, D – characteristic structure size: a) type 1
(structures without notches and pre-existing large cracks),
b) type 2 (notched structures) (material strength is bound
for small sizes by plasticity limit whereas for large sizes, the
material follows Linear Elastic Fracture Mechanics LEFM)
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equal to the deterministic size effect law. Thus, Eq. 5
can be regarded as the asymptotic matching of small-
size deterministic and large-size stochastic size
effects. The modulus m can be calculated from the
coefficient of variation cov

3. CONSTITUTIVE ELASTO-PLASTIC
MODEL WITH NON-LOCAL SOFTEN-
ING 
To describe the behaviour of concrete under tension
during three-point bending, a Rankine criterion was
used, for which the yield function f with isotropic soft-
ening defined as

where: σi, i=1, 2, 3, are the principal stresses, σt is the
tensile yield stress and κ denotes the softening para-
meter equal to the maximum principal plastic strainε1p. The associated flow rule was assumed. To model
the concrete softening under tension, the exponential
curve by Hordijk [22] was chosen: 

where ft stands for the tensile strength of the concrete
(ft=3.6 MPa). The constants A1, A2 and A3 are
assumed in the form

wherein κu=0.005 denotes the ultimate value of the
softening parameter, and the constants ci are c1=3
and c2=6.93. The modulus of elasticity was assumed
to be E=38.5 GPa and the Poisson ratio was υ=0.24.
The tensile fracture energy was Gf=gf �wc=52 N/m
(gf – area under the softening function, wf=15 mm –
width of the localized zone with lc=5 mm).

To properly describe strain localization, to preserve
the well-posedness of the boundary value problem, to
obtain mesh-independent results and to include a
characteristic length of micro-structure for simula-
tions of a deterministic size effect, a non-local theory

was used as a regularization technique [23], [24]. In
the calculations, the softening parameters κ were
assumed to be non-local (κ� ) (according to Brinkgreve
[25])

where κ� (x) is the non-local softening parameter, 
V – the volume of the body, x – the coordinates of the
considered (actual) point, ξ – the coordinates of the
surrounding points in a certain neighborhood of the
considered point and ω – the weighting function. The
non-locality parameter m controls the size of the
localized plastic zone and the distribution of the plas-
tic strain. For m=0, a local approach is obtained and
for m=1, a classical non-local model is recovered. If
the parameter m>1, the influence of non-locality
increases and the localized plastic region reaches a
finite mesh-independent size. The softening non-
local parameters κ� near boundaries were calculated
also on the basis of Eq. 10 (which satisfies the nor-
malizing condition). As a weighting function ω, 
a Gauss distribution function was used

where r is a distance between two material points.
The averaging in Eq.10 is restricted to a small repre-
sentative area around each material point (the influ-
ence of points at the distance of r=3lc is only of
0.01%). A characteristic length is usually related to
the micro-structure of the material (e.g. maximum
aggregate size). It is determined with an inverse iden-
tification process of experimental data. However, the
determination of the representative characteristic
length of micro-structure lc is very complex in con-
crete since strain localization can include a mixed
mode (cracks, shear zones) and the characteristic
length (which is a scalar value) is related to the frac-
ture process zone with a certain volume. 
The calculations were carried out with a characteris-
tic length of lc=5 mm and m=2 on the basis of our
model experiments with reinforced concrete beams
failing by shear using a digital image correlation
(DIC) technique [26] and earlier FE calculations with
the same constitutive model [27], [28]. The non-local
model was implemented in the commercial finite ele-
ment code ABAQUS [29] with the aid of subroutine
UMAT (user constitutive law definition) and UEL

70 A R C H I T E C T U R E   C I V I L  E N G I N E E R I N G   E N V I R O N M E N T 2/2012

 1

                                              ( ) r

p

b
rN Dl

rDfD
1

)1(
+

+= ∞σ  (Type 1 size effect law SEL)                     (1) 

                                                     ( ) t
N

o

fD
D1
D

σ =
+

 (Type 2 size effect law SEL),                        (2) 

 

                 )/1()(lim
0 pbrND

lrDfD += ∞

→
σ                

And         ∞

∞→
= rND
fD)(lim σ .                        (3) 

                                                                          
1

b
p

p

rDl
η

=
−

                                                             (4) 

                                                       

1
r n r
m

o b
N r

o p

L rD
( D ) f

D L D l
σ

×

∞= +
+ + ,                                   (5) 

                                                                 

2

21
1

11

mcov

m

Γ

Γ

+
= −

+
.                                                (6) 

                                                ( )1 2 3max , , tf σ σ σ σ κ= − ,                                          (7) 

 

                                        ( ) ( ) ( )3
1 2 31 ( ) expt tf A A Aσ κ κ κ κ= + − − ,                                      (8) 

 

                                        ,1
1

u

cA
κ

=     ,2
2

u

cA
κ

=    ( ) ( )2
3
13 exp11 ccA

u
−+=

κ
,                         (9) 

 

                                   ( ) ( ) ( )
( ) ( )

( )
d

1
d

V

V

m m
ω κ

κ κ
ω

−
= − +

−

x
x x

x ξ ξ
,                                        (10) 

                                                                  ( )
2

1 c

r
l

c

r e
l

ω
π

−

= ,                                                        (11) 

 

                                1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),λ λλ λ− ∆ − ∆∆ ∆ = × + ∆ + ∆x x

t

x x
f x xK x x s e x e x                             (12) 

(6)

 1

                                              ( ) r

p

b
rN Dl

rDfD
1

)1(
+

+= ∞σ  (Type 1 size effect law SEL)                     (1) 

                                                     ( ) t
N

o

fD
D1
D

σ =
+

 (Type 2 size effect law SEL),                        (2) 

 

                 )/1()(lim
0 pbrND

lrDfD += ∞

→
σ                

And         ∞

∞→
= rND
fD)(lim σ .                        (3) 

                                                                          
1

b
p

p

rDl
η

=
−

                                                             (4) 

                                                       

1
r n r
m

o b
N r

o p

L rD
( D ) f

D L D l
σ

×

∞= +
+ + ,                                   (5) 

                                                                 

2

21
1

11

mcov

m

Γ

Γ

+
= −

+
.                                                (6) 

                                                { } ( )1 2 3max , , tf σ σ σ σ κ= − ,                                          (7) 

 

                                        ( ) ( ) ( )3
1 2 31 ( ) expt tf A A Aσ κ κ κ κ= + − − ,                                      (8) 

 

                                        ,1
1

u

cA
κ

=     ,2
2

u

cA
κ

=    ( ) ( )2
3
13 exp11 ccA

u
−+=

κ
,                         (9) 

 

                                   ( ) ( ) ( )
( ) ( )

( )
d

1
d

V

V

m m
ω κ

κ κ
ω

−
= − +

−

x
x x

x ξ ξ
,                                        (10) 

                                                                  ( )
2

1 c

r
l

c

r e
l

ω
π

−

= ,                                                        (11) 

 

                                1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),λ λλ λ− ∆ − ∆∆ ∆ = × + ∆ + ∆x x

t

x x
f x xK x x s e x e x                             (12) 

(7)

 1

                                              ( ) r

p

b
rN Dl

rDfD
1

)1(
+

+= ∞σ  (Type 1 size effect law SEL)                     (1) 

                                                     ( ) t
N

o

fD
D1
D

σ =
+

 (Type 2 size effect law SEL),                        (2) 

 

                 )/1()(lim
0 pbrND

lrDfD += ∞

→
σ                

And         ∞

∞→
= rND
fD)(lim σ .                        (3) 

                                                                          
1

b
p

p

rDl
η

=
−

                                                             (4) 

                                                       

1
r n r
m

o b
N r

o p

L rD
( D ) f

D L D l
σ

×

∞= +
+ + ,                                   (5) 

                                                                 

2

21
1

11

mcov

m

Γ

Γ

+
= −

+
.                                                (6) 

                                                ( )1 2 3max , , tf σ σ σ σ κ= − ,                                          (7) 

 

                                        ( ) ( ) ( )3
1 2 31 ( ) expt tf A A Aσ κ κ κ κ= + − − ,                                      (8) 

 

                                        ,1
1

u

cA
κ

=     ,2
2

u

cA
κ

=    ( ) ( )2
3
13 exp11 ccA

u
−+=

κ
,                         (9) 

 

                                   ( ) ( ) ( )
( ) ( )

( )
d

1
d

V

V

m m
ω κ

κ κ
ω

−
= − +

−

x
x x

x ξ ξ
,                                        (10) 

                                                                  ( )
2

1 c

r
l

c

r e
l

ω
π

−

= ,                                                        (11) 

 

                                1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),λ λλ λ− ∆ − ∆∆ ∆ = × + ∆ + ∆x x

t

x x
f x xK x x s e x e x                             (12) 

(8)

 1

                                              ( ) r

p

b
rN Dl

rDfD
1

)1(
+

+= ∞σ  (Type 1 size effect law SEL)                     (1) 

                                                     ( ) t
N

o

fD
D1
D

σ =
+

 (Type 2 size effect law SEL),                        (2) 

 

                 )/1()(lim
0 pbrND

lrDfD += ∞

→
σ                

And         ∞

∞→
= rND
fD)(lim σ .                        (3) 

                                                                          
1

b
p

p

rDl
η

=
−

                                                             (4) 

                                                       

1
r n r
m

o b
N r

o p

L rD
( D ) f

D L D l
σ

×

∞= +
+ + ,                                   (5) 

                                                                 

2

21
1

11

mcov

m

Γ

Γ

+
= −

+
.                                                (6) 

                                                ( )1 2 3max , , tf σ σ σ σ κ= − ,                                          (7) 

 

                                        ( ) ( ) ( )3
1 2 31 ( ) expt tf A A Aσ κ κ κ κ= + − − ,                                      (8) 

 

                                        ,1
1

u

cA
κ

=     ,2
2

u

cA
κ

=    ( ) ( )2
3
13 exp11 ccA

u
−+=

κ
,                         (9) 

 

                                   ( ) ( ) ( )
( ) ( )

( )
d

1
d

V

V

m m
ω κ

κ κ
ω

−
= − +

−

x
x x

x ξ ξ
,                                        (10) 

                                                                  ( )
2

1 c

r
l

c

r e
l

ω
π

−

= ,                                                        (11) 

 

                                1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),λ λλ λ− ∆ − ∆∆ ∆ = × + ∆ + ∆x x

t

x x
f x xK x x s e x e x                             (12) 

(9)

 1

                                              ( ) r

p

b
rN Dl

rDfD
1

)1(
+

+= ∞σ  (Type 1 size effect law SEL)                     (1) 

                                                     ( ) t
N

o

fD
D1
D

σ =
+

 (Type 2 size effect law SEL),                        (2) 

 

                 )/1()(lim
0 pbrND

lrDfD += ∞

→
σ                

And         ∞

∞→
= rND
fD)(lim σ .                        (3) 

                                                                          
1

b
p

p

rDl
η

=
−

                                                             (4) 

                                                       

1
r n r
m

o b
N r

o p

L rD
( D ) f

D L D l
σ

×

∞= +
+ + ,                                   (5) 

                                                                 

2

21
1

11

mcov

m

Γ

Γ

+
= −

+
.                                                (6) 

                                                ( )1 2 3max , , tf σ σ σ σ κ= − ,                                          (7) 

 

                                        ( ) ( ) ( )3
1 2 31 ( ) expt tf A A Aσ κ κ κ κ= + − − ,                                      (8) 

 

                                        ,1
1

u

cA
κ

=     ,2
2

u

cA
κ

=    ( ) ( )2
3
13 exp11 ccA

u
−+=

κ
,                         (9) 

 

                                   ( ) ( ) ( )
( ) ( )

( )
d

1
d

V

V

m m
ω κ

κ κ
ω

−
= − +

−

x
x x

x

ξξ ξξ ξξ

ξξ ξξ
,                                        (10) 

                                                                  ( )
2

1 c

r
l

c

r e
l

ω
π

−

= ,                                                        (11) 

 

                                1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),λ λλ λ− ∆ − ∆∆ ∆ = × + ∆ + ∆x x

t

x x
f x xK x x s e x e x                             (12) 

(10)

 1

                                              ( ) r

p

b
rN Dl

rDfD
1

)1(
+

+= ∞σ  (Type 1 size effect law SEL)                     (1) 

                                                     ( ) t
N

o

fD
D1
D

σ =
+

 (Type 2 size effect law SEL),                        (2) 

 

                 )/1()(lim
0 pbrND

lrDfD += ∞

→
σ                

And         ∞

∞→
= rND
fD)(lim σ .                        (3) 

                                                                          
1

b
p

p

rDl
η

=
−

                                                             (4) 

                                                       

1
r n r
m

o b
N r

o p

L rD
( D ) f

D L D l
σ

×

∞= +
+ + ,                                   (5) 

                                                                 

2

21
1

11

mcov

m

Γ

Γ

+
= −

+
.                                                (6) 

                                                ( )1 2 3max , , tf σ σ σ σ κ= − ,                                          (7) 

 

                                        ( ) ( ) ( )3
1 2 31 ( ) expt tf A A Aσ κ κ κ κ= + − − ,                                      (8) 

 

                                        ,1
1

u

cA
κ

=     ,2
2

u

cA
κ

=    ( ) ( )2
3
13 exp11 ccA

u
−+=

κ
,                         (9) 

 

                                   ( ) ( ) ( )
( ) ( )

( )
d

1
d

V

V

m m
ω κ

κ κ
ω

−
= − +

−

x
x x

x ξ ξ
,                                        (10) 

                                                                  ( )
2

1 c

r
l

c

r e
l

ω
π

−

= ,                                                        (11) 

 

                                1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),λ λλ λ− ∆ − ∆∆ ∆ = × + ∆ + ∆x x

t

x x
f x xK x x s e x e x                             (12) 

(11)



N U M E R I C A L  S T U D I E S  O N  S I Z E  E F F E C T S  I N  C O N C R E T E  B E A M S  

(user element definition) for efficient computations
[30]. 

4. FE-INPUT DATA
The two-dimensional FE-analysis of free-supported
unnotched beams was mainly performed with 4 dif-
ferent beam sizes of a similar geometry D�Lt:
8�32 cm2 (called small-size beam), 16�64 cm2 (called
medium-size beam), 32�128 cm2 (called large-size
beam), 192�768 cm2 (called very large-size beam) 
(D – beam height, Lt – beam length), Fig. 2. The span
length L was equal to 3D for all beams. The depth of
the specimens was t= 4 cm. The size D�Lt�t of the
first 3 beams was similar as in the corresponding
experiments carried out by Le Bellego et al. [13] and
Skarżyński et al. [31]. The quadrilateral elements
divided into triangular elements were used to avoid
volumetric locking. Totally, 13’820 (small-size beam),
39’900 (medium-size beam), 104’780 (large-size
beam) and 521’276 (very large-size beam) triangular
elements were used, respectively The computation
time varied between 3 hours (small-size beam) and 3
days (very large beam) using PC 3.2 MHz.
In deterministic calculations, all specimens had the
constant uniformly distributed tensile strength
ft = 3.6 MPa. In order to properly capture strain
localization in concrete, the mesh was very fine in the
mid-part of the beam (where the element size was not
greater than 3�lc). A quasi-static deformation of a
small and medium beam was imposed through a con-
stant vertical displacement increment Δu prescribed
at the upper mid-point of the beam top. 
Correlated random fields describing a fluctuation of
the tensile strength were used to capture a stochastic
size effect. The distribution of this single random
variable ft took the form of a truncated Gaussian
function with the mean concrete tensile strength of
3.6 MPa, Fig. 3. Additionally, it was assumed that the
concrete tensile strength values changed between
1.6 MPa and 5.6 MPa ( ft=3.6�2.0 MPa). To fulfil this
condition, the standard deviation sft=0.424 MPa was
used in the calculations. The coefficient of variations
describing the field scattering was cov=sft/ f � t=0.118  
(f� t – the mean tensile strength). The cut of variables
did not visibly change a theoretical Gauss distribution
since 5� sft=5�0.424=2.12 MPa. Other stochastic FE
calculations showed that the assumption of a non-
symmetric distribution of material parameters did
not significantly affect the results [32].

The second order homogeneous correlation function
was adopted to capture the fluctuation of the tensile
strength [33]

where Δx1 and Δx2 are the distances between two
field points along the horizontal axis x1 and vertical
axis x2 and λ x1 and λ x2 are the decay coefficients
(damping parameters) characterizing a spatial vari-
ability of the specimen properties (i.e. describe the
correlation between the random field points). The
variances and covariances were obtained based on
the procedure of local averages of the random fields
[34]. We took mainly into account a stronger correla-
tion of the tensile strength ft in a horizontal directionλ x1=1.0 1/m and a weaker correlation in a vertical
directions λ x2  =3.0 1/m in Eq. 12 (due to the way of
the specimen preparation by means of layer-by-layer
from the same concrete block). The range of signifi-
cant correlation was approximately 80 mm in a hori-
zontal direction (equal to the height of a small-size
beam) and 30 mm in a vertical direction (equal to the
layer height formed during concrete placing). Some
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Figure 2.
Geometry of free-supported unnotched concrete beams 
subjected to three-point bending 

Figure 3.
Distribution of concrete tensile strength in single point of
mesh
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calculations were also carried out with a correlation
range equal to 15 mm and 150 mm in a horizontal
direction. The smaller the decay parameter λ is, the
shorter becomes the correlation range. The dimen-
sion of the random field was identical as the finite
element mesh. The same random values were
assumed in 4 neighbouring triangular elements. To
generate the random fields, the conditional-rejection
method was used [18]. The method makes it possible
to simulate any homogeneous or non-homogeneous
truncated Gaussian random field described on regu-
lar or irregular spatial meshes. An important role in
the calculations was played by the propagation base
scheme covering sequentially the mesh points and the
random field envelope which allowed for fulfilling
the geometric and boundary conditions of the struc-
ture of the model. Random fields of practically
unlimited sizes could be generated.
In the paper the Monte Carlo method was used
which does not impose any restriction to random
problems. Its only limitation is the time of calcula-
tions. A further decrease of sample numbers can be
obtained using Monte Carlo variance reduction
methods. The stochastic calculations according to the
proposed version of the Latin sampling method were
performed in two steps [35]. First, an initial set of
random samples was generated in the same way as in
the case of a direct Monte Carlo method. Next, the
generated samples were classified and arranged in
increasing order according to the chosen parameters
(i.e. their mean values and the gap between the low-
est and the highest values of the fields). From each
subset defined in this way, only one sample was cho-
sen for the analysis. The selection was performed in
agreement with the theoretical background of the
Latin sampling method. The numerical calculations
were performed only for these samples. It was proved
that using the Latin sampling variance reduction
method the results can be properly estimated by sev-
eral realizations only (e.g. 12 [35]).

5. FE RESULTS
5.1. Deterministic size effect
The evolution of the normalized flexural (horizontal
normal) stress 1.5FL/(ftD2t) versus the normalized
deflection u/D during three-point bending for four dif-
ferent beam sizes with the constant values of tensile
strength ft is shown in Fig. 4. The calculated maximum
deterministic vertical forces were: Fmax=3.83 kN
(D=8 cm), Fmax=6.75 kN (D=16 cm), Fmax=12.57 kN

(D=32 cm) and Fmax=66.18 kN (D=192 cm), respec-
tively. The normalized nominal (flexural) strengthσn/ft=1.5FmaxL/(D2tft) varied between 1.1 (D=192 cm)
and 1.5 (D=8 cm). The strength and ductility strongly
increased with decreasing beam height. For the large
and very large-size beam, the snap-back behaviour
occurred (decrease of strength with decreasing defor-
mation). It was in particular very strong for the very
large-size beam. 
The width of a localized zone for all beam sizes was
about w=1.5 cm. In turn, the height of the localized
zone h measured at the peak load increased non-lin-
early with increasing beam height D, i.e.: 24 mm,
34 mm, 40 mm, and 48 mm for the small
(D = 80 mm), medium (D = 160 mm), large
(D = 320 mm) and very large beam (D=1920 mm),
respectively. The larger the beam, the lower was the
ratio of the localized zone height to the beam height
h/D: 0.3 (D=80 mm), 0.212 (D=160 mm), 0.125
(D=320 mm) and 0.025 (D=1920 mm). 
In Fig. 5, the evolution of the normalized flexural
stress 1.5FL/(ftD2t) as the function of the scale para-
meter h/D is presented. When the parameter h/D
increases, both the nominal strength and brittleness
of concrete beams also increase. 
Figure 6 shows the outcomes from deterministic sim-
ulations indicating a pronounced deterministic-ener-
getic size effect on the normalized flexural strength
fr/ft=1.5FmaxL/(D2tft). The nominal strength of
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Figure 4.
Normalized horizontal normal (flexural) stress - deflection
curves 1.5FL/(ftD

2t)=f(u/D) under 3-point bending with con-
stant values of tensile strength for 4 different concrete beam
heights: small D=8 cm (dashed line “a”), medium D=16 cm
(dotted-dashed line “b”), large D=32 cm (dotted line “c”),
very large D=192 cm (solid line “d”), A) line σσN/ft=1.5, 
B) line σσN/ft=1.0 (F – vertical force, L – beam length, 
D – beam height, t – beam thickness, ft – tensile strength)
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unnotched concrete beams approaches the horizon-
tal asymptote for very large structures. On the basis
of the nonlinear regression method by Leveneberg-
Marquardt, the following parameters were found to
fit Eq.1: fr

∞=3.782 MPa, Db=40 mm, lp=13.6 mm,
r=1.0. The agreement of FE results for 8 beams with
Eq. 1 is almost perfect.

5.2. Statistical size effect
The 12 different evolutions of the normalized vertical
force 1.5FL/(ftD2t) versus the normalized vertical
deflection u/D are shown in Fig. 7 (the deterministic
curve is also attached). 
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Figure 7.
Normalized horizontal normal (flexural) stress-deflection
curves 1.5FL/(ftD2t)=f(u/D) with constant (dashed red line)
and random (solid lines) value of tensile strength for 4 dif-
ferent beam heights: a) small-size D=8 cm, b) medium-size
D=16 cm, c) large-size D=32 cm, d) very large-size beam
D=192 cm

a

b

c

d

Figure 5.
Evolution of normalized horizontal normal (flexural) stress
1.5FL/(ftD

2t) versus normalized localized zone height h/D in
deterministic simulations for concrete beams (“a” – small,
“b” – medium, “c” – large and “d” – very large-size beam)

Figure 6.
Calculated normalized flexural tensile strength
fr/ft=1.5FmaxL/(ftD

2t) versus beam height D in unnotched
concrete beams from deterministic FE calculations (red cir-
cles) versus beam height D compared with the deterministic
size effect model by Bazant (red solid line by Eq. 1)

c
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The deterministic normalized vertical force is located
in the range of stochastic values for a small and medi-
um-size beam or is the maximum values for a large
and very large-size beam. For the height of D=8 cm,
the maximum vertical force changes between
Fmax=3.267-4.08 kN, and the mean value
Fmean=3.72 kN is by 3% smaller than the determinis-
tic value F=3.83 kN (the coefficient of variation
cov=0.063). If the beam height is D=16 cm, the max-
imum vertical force varies between 5.61-6.82 kN and
the mean stochastic force Fmean=6.25 kN (with the
coefficient of variation cov=0.057) is smaller by 7%
than the deterministic value (F=6.75 kN). For the
both beams, the single maximum statistical vertical
force can be higher than the deterministic one. If the
beam height is D=32 cm, the maximum vertical force
changes between 10.31-12.25 kN, and the mean sto-
chastic Fmean=11.07 kN (with the coefficient of varia-
tion cov=0.053) is smaller by 12% than the deter-
ministic value of F=12.57 kN. Finally, in the case of
the very large-size beam D=192 cm, the maximum
vertical force changes between 54.32-59.18 kN and
the mean stochastic Fmean=57.14 kN (the variation
coefficient equals cov=0.027) is smaller by 14% than
the deterministic value of F=66.18 kN. Thus, both
the mean stochastic nominal strength and coefficient
of variation always decrease with increasing size D
and the influence of the random distribution of the
tensile strength on the nominal strength is stronger
for larger structures. 
The random distribution of ft does not affect the
mean width of a localized zone, which is again about
1.5 cm for all beam sizes. A localized zone can be
strongly non-symmetric and curved. It occurs at the
mean distance of about 2.0 cm (small-size beam) and
of about 40 cm (very large-size beam) from the beam-
centre. The mean height of localized zones h at peak
was closed to the deterministic outcomes.
The maximum vertical force in concrete beams
strongly depends on the position of a localized zone.
This position is connected with the distribution and
magnitude of the tensile strength at the place of a
localized zone (within the area w�h) and the magni-
tude of the horizontal normal stress σ11 due to a
bending moment. A localized zone is created, where
the ratio of mean local tensile strength f �

t in the local-
ized area w�h, to normal stress σ11 is minimum. The
maximum vertical force increases with increasing
ratio f� t(w�h)/σ11. In a small-size beam, the beam mid-
region where a localized zone can be created is very
limited due to the assumed standard deviation of the

tensile strength and correlation range (3 cm in a ver-
tical direction and 8 cm in a horizontal direction). In
this limited beam region (with a small number of
weak spots), the tensile strengths are strongly corre-
lated and can be higher or lower than its mean value
ft=3.6 MPa. Therefore, the vertical normal tensile
force can be smaller or larger than this in the deter-
ministic study (depending on the spot choice by a
localized zone for propagation). With an increase of
the beam size, the number of weaker local spots
increases with the correlation range assumed and the
beam mid-region where a localized zone can propa-
gate is significantly larger. In this wide beam region,
the tensile strengths are weaker correlated than in a
small-size beam. So there exists a very high probabil-
ity to achieve a smaller vertical force than in a small
beam due to the great number of weak spots with the
tensile strength smaller than  f t =3.6 MPa, which can
be chosen by a localized zone for propagation.
Bazant and Novak [21], [36] recommended the
Weibull modulus m=24 in Eq. 5 (with
Lo=Db=15.53 mm, lp=0, r=1.14 and fr

∞=3.68 MPa).
Our deterministic-statistical results show the best
agreement with Eq. 5 by assuming the Weibull mod-
ulus m=48 based on the coefficient of variation
cov=0.027 from Eq. 6 (with D=192 cm) and
Lo=Db=30.37 mm, n=2, lp=0, r=1 and
fr

∞=3.90 MPa. 

Figure 8 presents a comparison between our numeri-
cal deterministic-statistical results and size effect law
by Bazant (Eqs. 5) with the related asymptotes using
the Weibull modulus m=12-48. The deterministic-
statistical outcomes indicate a further decrease of the
nominal (flexural) strength with increasing beam size
while the deterministic ones reach their lower limit.
Our deterministic-statistical results present also a
satisfactory agreement with the size effect law by
Bazant (Eq. 5) by assuming the recommended value
of m=24 (Lo=Db=16.95 mm, lp=0, r=1 and
fr

∞=4.753 MPa).

Next, we used the deterministic parameters from
Section 5.1 (Db=40 mm, lp=13.6 mm, r=1 and
fr

∞=3.78 MPa, n=2) which fit Eq. 1 to match now
Eq.5. Only the Weibull modulus m=48 enabled a
transition from a pure deterministic to a coupled
deterministic-statistical size effect. The value m=12
highly underestimated the calculated deterministic-
statistical flexural tensile strength. 
All size effect results of the normalized nominal
(flexural) strength σN/ft=1.5FmaxL/(D2tft) for
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unnotched concrete beams are summarized in Fig. 9
as compared to the size effect laws by Bazant (Eq. 5)
with m=48, Lo=Db=40 mm, lp=13.6 mm, r=1,
fr

∞=3.78 MPa and n=2. 

6. CONCLUSIONS
The following conclusions can be drawn from our non-
linear FE-analysis with the constant and spatially cor-
related local stochastic tensile strength for unnotched
plain concrete beams of a similar geometry.
Our numerical approach is capable to describe a
deterministic and statistical size effect. The calculat-
ed combined deterministic-statistical size effect is in
agreement with the size effect law SEL and MFSL in
the considered beam size range. However, fractality
is not needed to induce a size effect, since the stress
redistribution and energy release during strain local-
ization cause a size effect (thus, fractality can con-
tribute to a certain refinement of a size effect but not
to its replacement). The size effect model by Bazant
is more universal and has physical foundations, and
can be introduced into design codes. 
A decrease of the nominal strength with increasing
beam size is significant in deterministic calculations.
The flexural tensile strength measured at laboratory
scale is highly overestimated. The snap-back behav-
iour occurs already in large-size beams with the
height of 32 cm. The width of the localized zone is
about 1.5 cm for all beam sizes. The ratio of the
height of the localized zone to the beam height
decreases with increasing beam size. The localized
zone is straight.
A further decline of the nominal strength with
increasing beam size is caused by a random distribu-
tion of the tensile strength. The larger the beam, the
stronger is the influence of a statistical distribution
on the nominal strength due to the presence of a larg-
er number of local weak spots (i.e. the mean statisti-
cal bearing capacity is always smaller than the deter-
ministic one). The statistical bearing capacity is larg-
er in some realizations with small and medium-large
beams than the deterministic value. The randomness
of the tensile strength does not change the mean
width of the localized zone. The localized zone can be
curved and non-symmetric. This position of the local-
ized zone is connected with the distribution and mag-
nitude of the tensile strength in a localized zone at
peak and the quantity of the horizontal normal stress
due to bending. In corresponding notched concrete
beams, the stochastic size effect is negligible.
Our FE results match well the combined determinis-
tic-statistical size effect law by Bazant with the
Weibull modulus m=24-48. In turn, a prediction of
the combined deterministic-statistical size effect
based on deterministic results is only possible with
the modulus m=48.
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Figure 8.
Calculated normalized flexural tensile strength
fr/ft=1.5FmaxL/(ftD

2t) versus beam height D from determin-
istic (circles) and stochastic (triangles) FE calculations com-
pared with deterministic (line “a”, Eq. 13) and determinis-
tic-stochastic size effect law by Bazant (Eq. 17) for various
Weibull moduli m and constant deterministic parameters
(line “b” – m=48, line “c” – m=24, line “d” – m=12)

Figure 9.
Calculated normalized nominal (flexural) strengthσσN/ft(σσN=1.5FmaxL/(ftD

2t)) versus beam height D for
unnotched concrete beams from deterministic (red circles)
and stochastic (blue triangles) FE calculations compared
with deterministic (Eq. 1) (red solid line) and deterministic-
stochastic (Eq. 5) (blue dashed line) size effect law by Bazant
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