
1. INTRODUCTION
The analysis of large civil structures made of
composite materials, like brick masonry and/or heavi-
ly reinforced concrete, should best be conducted at a
macro-scale. In this case, the material can be
described as a continuum whose average properties
are identified at the level of constituents taking into
account their geometric arrangement.
For structural masonry, several different approxima-
tions have been developed for assessing the average
properties. Those include the micropolar Cosserat
continuum models (e.g. Sulem and Muhlhaus [1],
Masiani and Trovalusci [2]) as well as the estimates

based on the theory of homogenization for periodic
media (e.g., Anthoine [3-4]). In addition, a significant
work has also been undertaken with regards to the
development of phenomenologicaly-based macro-
scopic failure criteria. Examples include the studies of
Lourenço et al. [5], Raffard et al. [6] and Ushaksaraei
and Pietruszczak [7].
For heavily reinforced concrete structures, such as
hydraulic or nuclear ones, the presence of reinforce-
ment cannot be modeled in a discrete way, as this
would be beyond the capabilities of modern day com-
puters. Thus, the material should also be considered
as a composite medium comprising the concrete
matrix and a set of families of reinforcement.
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Ab s t r a c t
This paper addresses the issue of modeling of inelastic response of large–scale civil structures built of either masonry or
heavily reinforced concrete. It consists of two parts that examine the mechanical characteristics of both these classes of
materials and present applications of the respective mathematical frameworks to some real engineering structures. For
masonry, a methodology is described for identification of macroscopic properties based on a meso-scale approach which
employs a finite element analysis at the level of the Representative Elementary Volume. The procedure is illustrated by an
example that involves the analysis of masonry components of a hydroelectric power generation facility in Quebec (Canada).
For reinforced concrete, a non-linear continuum theory is reviewed that describes the mechanical effects of alkali-aggregate
reaction (AAR) The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in
nuclear power facilities located, once again, in Quebec (Canada).

S t r e s z c z en i e
Poniższy artykuł dotyczy nieliniowego modelowania wielkogabarytowych konstrukcji inżynierskich wykonanych z cegły lub
silnie zbrojonego betonu. Artykuł składa się z dwóch odrębnych części, które opisują własnosci mechaniczne obu materiałów
i przedstawiają zastosowania do praktycznych problemów inżynierskich. Dla konstrukcji murowych przestawiona jest
metodologia identyfikacji makroskopowych własnosci mechanicznych, która opiera sie na analizie numerycznej (w skali
mezoskopowej) Elementarnej Objętości Reprezentatywnej. Procedura zilustrowana jest przykładem numerycznym dotyczą-
cym analizy konstrukcji murowych w jednej z elektrowni wodnych w Quebec (Kanada). Dla konstrukcji żelbetowych
przedyskutowane jest nieliniowe sformułowanie opisujące efekty mechaniczne reakcji alkalicznej w betonie. To podejście
jest zastosowane do analizy elementów konstrukcyjnych w elektrowni atomowej zlokalizowanej również w Quebec (Kanada).
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The overall macroscopic behaviour can then be
defined by employing suitable averaging techniques.
Several approaches of this type have been developed
in the past; the examples include the works of
Scordelis [8], Crisfield & Wills [9], Pietruszczak &
Winnicki [10].
This paper consists of two main parts. The first part
deals with the unreinforced masonry and is focused on
presenting a methodology for deriving the equivalent
continuum properties from a meso-scale approach.
The approach is verified by simulating the experiments
conducted by Page [11-12], which involve a series of
biaxial load-controlled tests carried out at different
orientations of the bed joints. The constituents have
been modeled using a plasticity framework that
accounts for the onset and propagation of localized
deformation. The first approach examined here
involves the finite element simulations of entire pan-
els. Later, the formulation is simplified by solving the
associated boundary-value problem over a suitably
chosen Representative Elementary Volume subjected
to periodic boundary conditions. The meso-scale
approach described above has been employed to
define the macroscopic properties of masonry
components of some hydroelectric power generation
facilities in Quebec, Canada. Those include masonry
structures of the Pugan hydroelectric power station
located on the Gatineau River in Quebec, Canada.
Here, a series of dynamic analyses have been conduct-
ed that examine the impact of seismic retrofit of the
masonry walls on their overall stability.
In part two of this paper, the issue of modeling of
reinforced concrete structures affected by chemo-
mechanical degradation is addressed. In particular,
the focus is on nuclear power plant structures suffer-
ing from the effects of continuing alkali-aggregate
reaction. The mechanical behaviour of reinforced
concrete affected by AAR is described by employing
a non-linear continuum theory that incorporates a
chemo-mechanical coupling (Winnicki & Pietrusz-
czak [13]). The governing constitutive relations,
which have been incorporated in a finite element
code, are first reviewed. Later, the results of numeri-
cal studies are presented. First, the mechanical
response of a containment structure in a nuclear
facility located near the community of Trois-Rivières
in Québec is examined. The structure is subjected to
continuing AAR followed by a seismic event typical
for the region. Subsequently, an inelastic analysis is
carried out for a spent fuel exchange room in the
nuclear reactor building.

2. NUMERICAL ANALYSIS OF LARGE-
SCALE MASONRY STRUCTURES
2.1. Assessment of macroscopic properties of
masonry
A direct approach for specification of properties of
structural masonry involves the experimental testing of
masonry panels. One of the most comprehensive sets
of experimental data for in-plane loading of masonry
at various orientations of bed joint is that obtained by
Page [11-12]. The tests were conducted under biaxial
compression and biaxial tension-compression and
were carried out on square half-scale panels.
Apparently, the experimental testing is expensive,
time-consuming and the scatter of the results is
significant. A pragmatic alternative is the use of
numerical/analytical tools to predict the response of
structural masonry based on properties of constituents,
which can be identified from standard material tests.
Such an approach is more flexible in terms of specifica-
tion of material parameters and will be pursued here.
The accuracy of the assessment of macroscopic
properties depends strongly on the constitutive
relation employed to describe the response of
constituents. The specific form used here is that
outlined in the article by Shieh-Beygi & Pietruszczak
[14]. For the completeness of the presentation, the
key assumptions embedded in this framework are
reviewed below.
The behaviour of both constituents, i.e. bricks and
mortar, is assumed to be elastic-brittle in tension
regime, while for compressive stress trajectories,
plastic-brittle characteristics are employed. Thus, in
tension domain the yield and failure surfaces coin-
cide with each other. However, in compression
regime a distinct yield surface is introduced a priori,
whose evolution is attributed to accumulated plastic
distortions. Thus,

In Eq.(1), σm , σ$ and θ represent a set of invariant
measures of the stress tensor (cf. Nayak &
Zienkiewicz [15]), σ0 is the tensile strength of the
material and ξ is an internal variable whose evolu-
tion is a function of deviatoric plastic strain history,
i.e. ξ
 ∞ e
 pij e
 pij . Moreover, η(ξ ) is a monotonically
increasing variable and for ξ → ∞ there is η → ηf ,
where ηf refers to the conditions at failure.
Prior to the onset of localization, the load-
ing/unloading criteria are established using the
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classical Kuhn-Tucker conditions and the elastoplas-
tic operator is obtained following the standard plas-
ticity procedure, i.e. invoking consistency condition
and the additivity postulate. This leads to

in which De
ijkl represents the elastic constitutive

operator, and ψ is the plastic potential.
The conditions at failure are said to be associated with
formation of a macrocrack, whose direction is
consistent with either Rankine’s and Mohr-Coulomb
representation, viz. Eq.(1). In the post-localized range,
a simple volume averaging procedure is employed
based on the work reported by Pietruszczak [16]. The
procedure incorporates the stress/strain rate averaging
and the deformation within the fractured zone is
defined in terms of velocity discontinuities across the
interface, g
 i . The averaged macroscopic constitutive
relation is expressed as

where

In equations above, µ is a characteristic dimension
that is defined as the ratio of the surface area of the
localization plane to the volume of the element.
Furthermore, Kij is the elastoplastic operator speci-
fying the response within the localized zone. The
latter is defined here by incorporating a strain-
softening plasticity framework and the details of the
specification of this operator are provided in the
original reference [14].

2.1.1. Simulations of tests conducted by Page
In order to illustrate the methodology for
specification of material characteristics of masonry,
the experimental tests conducted by Page [11-12] are
considered. The tested specimens consisted of square
360 360 mm panels with half-scale bricks. The
samples were subjected to a series of biaxial load-
controlled tests that were conducted at five different
orientations of the bed joints θ, viz. 0°, 22.5°, 45°,
67.5°, and 90°. The results from all orientations were
then collected to obtain a comprehensive picture of
the directional strength characteristics of brick
masonry.
The first approach examined here involves the finite
element simulations of entire panels tested by Page
(see Ref. [14]). The simulations were based on the
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Figure 1.
Numerical simulations of panels tested by Page (1983); (a) FE discretization; (b) & (c) failure envelopes for uniaxial tension and
biaxial compression-tension (σc/σt=1.0), respectively (after Shieh-Beygi & Pietruszczak [14])
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framework outlined in Section 2.1. The specimens
were discretized using a three dimensional mesh with
over 30,000 8-noded solid elements, Fig. 1a. The
analysis was carried out for different orientations of
the bed joints relative to the loading direction. For
each orientation, two different loading patterns were
considered, namely uniaxial tension and biaxial
tension-compression with the ratio of vertical to
horizontal traction σc/σt= 1 (equivalent to a pure
shear at 45°). The basic material parameters, for both
constituents, are provided in the original reference.
The key results are given in Figs. 1b and 1c, which
present the directional strength characteristics. It is
seen from Fig.1b that the experimental data is quite
the numerical predictions, however, are in a fairly
good agreement with the respective mean values. The
failure modes corresponding to different configura-
tions are quite diversified and the details, once again,
are discussed in the original article.
An important aspect of the solution is the periodicity
of stress/displacement field for any given orientation.
As an example, Fig. 2 shows the distribution of the
principal stresses for θ= 10°. It is evident here that
the stress field is periodic within the entire domain,
except for the regions adjacent to the boundaries.
The notion of periodicity can be exploited by
introducing an approach based on numerical
homogenization. Thus, rather than considering the
entire panel, the boundary value problem can be
solved over a suitably chosen Representative
Elementary Volume (REV), subjected to periodic
boundary conditions. As an illustration of this
approach, the key results reported in Ref. [14] are
provided here. The adopted REV was discretized
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Figure 2.
The distribution pattern of (a) maximum principal stress; (b) minimum principal stress in biaxial tension-compression θ=10°;
(c) REV and its finite element discretization (after Shieh-Beygi & Pietruszczak [14])

a b c

Figure 3.
Directional strength characteristic for uniaxial tension and
biaxial compression-tension; comparison between the
results for the full-scale and REV simulations (after Shieh-
Beygi & Pietruszczak [14])
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using approx. 3800 8-noded solid elements, Fig. 2c.
Again, a load-controlled scheme was used in the
analysis and the ultimate load was identified with the
onset of global instability.
Fig. 3 shows the strength characteristics for different
orientations of the bed joints. It can be seen that the
results for RVE are close to those obtained from the
full-scale tests. The difference stems mainly from the
influence of boundary conditions that affect the local
stress/strain fields. Apparently, the difference
between the full-scale simulations and the REV will
decrease by increasing the size of the test panels.
As mentioned earlier, the methodology outlined
above can be employed to generate the data on the
directional strength properties of masonry. This
information can then be used for the purpose of
identification of material functions that appear in a
macroscopic formulation of the problem.

2.2. Macroscopic framework; critical plane approach
The mathematical framework used at the macroscopic
level employs an elastic-brittle idealization. The
argument here is that under a seismic excitation,
which is of main interest in this work, the
predominant failure mode is a tensile fracture, which
is of a brittle nature. The onset of localization and the
orientation of the failure plane are derived from the
critical plane approach (Pietruszczak &Mroz [17]) by
solving a constrained optimization problem. The
response in the post-localized regime is modeled by
employing the volume averaging procedure that
incorporates representation (3) of Section 2.1.
The specific form of macroscopic failure criterion is
that developed in Ref. [7]. It incorporates a linear
Coulomb failure function with a cut-off in tension
domain, which is analogous to representation (1)

used at the meso-level, i.e.
where τ = σ ijn is j; σn = σ ijn in j are the shear and
normal components of the traction vector on the
plane with unit normal ni and si ni= 0. In Eq.(5), the
material parameters σ0, � and c are defined in terms

of orientation-dependent functions
Here, the parameters σ01...,�1,...c1 are the

distribution coefficients and Ω’s are symmetric
traceless tensors which describe the bias in the spatial
variation of the strength parameters. The orientation
of the localization plane can be determined by
maximizing the failure functions F1 and F2, Eq.(5),
with respect to ni and si, subject to constraints
ni ni= 1; si si= 1; nisi= 0. For the given orientation,
the conditions at failure correspond to
max {F1,F2}=0.

The identification of material parameters is based, in
general, on the methodology analogous to that
outlined in Section 2.1.1.

2.3. Numerical simulations of masonry walls of
Paugan power station
The example provided here, which illustrates the pro-
posed methodology, is related to the seismic analysis
of masonry walls of Paugan power station located near
Hull, Quebec (Pietruszczak & Gocevski [18]). The
intake structure was built in 1927 and, over the last few
decades, it has suffered a significant damage due to
continuing alkali-aggregate reaction. Periodic repairs
were made in 1947 (grout curtains and concrete
repairs at various locations) and, more recently, in
1990 when slot cuts were made between the gravity
section/ auxiliary spillway as well as the intermediate
section and the intake. The powerhouse of the Paugan
hydroelectric plant has non-bearing masonry walls that
serve as enclosures. The primary interest of this study
is the assessment of the stability of these walls under a
seismic excitation typical for the region.
The assessment of strength properties of the Paugan
brickwork involved the simulations of the response in
uniaxial tension, pure shear and biaxial compression-
tension (σc/σt= 2.33) for different orientations of the
bed joints. For all these loading histories, the behav-
iour is primarily governed by the properties of the
mortar joints. For the Paugan masonry, the key
strength properties, i.e. tensile strength, cohesion and
the friction angle, are σ0= 0.18 MPa, c= 0.24 MPa,�= 45°, respectively. The units of the brickwork have
the dimensions of 208 98 61 mm, while the mortar
joints are approx. 10 mm thick. In the identification
process, the set of data corresponding to uniaxial
tension, was employed for specification of the
parameters embedded in the distribution of σ0, eq.(6).
The predicted strengths in pure shear and biaxial com-
pression-tension were then used for specification of
constants appearing in the distribution of � and c. The
details on the identification procedure, which employs
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a constrained optimization scheme, are provided in
the article by Kawa et al. [19]. The resulting values of

the best-fit coefficients are:
The superstructure of the Paugan powerhouse is
composed of structural steel single bay frames,
spaced 7.30 m c/c along the entire length of 146 m of
the structure. Unreinforced non-bearing masonry
walls, incorporating the columns of the steel frames,
serve as enclosures. The height of the walls is 16.5 m;
the walls are of variable thickness, from 0.425 m to
1.0 m, and accommodate a series of large window
frames. The outside and inside views of the power-
house are presented in Fig. 4.
The finite element model is shown in Fig. 5 and con-
sists of the concrete slab, concrete and steel columns,

the steel frame, the powerhouse roof, and the brick
wall with the window openings. The details of the
finite element model were as follows:
• total no of elements: 125,137; element types:
upstream concrete slab and powerhouse roof –
thick shell elements, concrete and steel column –
3D beam elements, brick wall-solid brick elements
with homogenized properties, weight above the
roof-point mass elements; connection between the
frame and the bricks as well as between the col-
umn and the bricks – interface contact elements.

The primary dynamic simulations, following the time
history of the earthquake, were carried out in two
steps, viz. linear and non-linear analysis. Both
incorporated self weight combined with deformations
at the base caused by a continuing alkali-aggregate
reaction. The earthquake record typical for the
region of Paugan (maximum ground acceleration of
0.414 g in the horizontal direction and 0.276 g in the
vertical direction) was adopted. For the linear elastic
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Figure 5.
Finite element model; the outside and inside views

Figure 4.
The outside and inside views of the powerhouse
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analysis, the plastic admissibility of the stress field
(for the time step producing maximum values of
failure function) was assessed by invoking the macro-
scopic failure criterion (5). If the stress field was
admissible the analysis was terminated, otherwise a
non-linear dynamic analysis was carried out, based on
the framework outlined in Section 2.1.2.
The results of the linear dynamic analysis, viz. the
evaluation of the admissibility of the stress field, are
presented in Fig. 6. The figure shows the distribution
of the maximum value of the failure function F,
Eq.(5). In general, in the regions experiencing F>0
(shown in red) the stress state is plastically inadmissi-
ble, i.e. will result in formation of cracks in the brick-
work. The contours of the value of F are shown on
the outside (a) and inside (b) faces, respectively.
The distribution of F indicates that a linear dynamic
analysis is not adequate in this case. The results of
non-linear analysis, in terms of distribution of

damage zones, are shown in Fig. 7. By examining
these results one may conclude that, in spite of local
cracking, the walls will sustain the seismic load with-
out the loss of stability. To ensure that large
fragments of masonry do not detach from the walls, a
light reinforcement is suggested.
The main reinforcement strategy examined here con-
sisted of adding an additional attachment to the steel
structure in the regions of potential cracking of the
brick panel, using anchor bolts. Fig. 8a shows the
positioning of the bolts. A total of 3 bolts per column,
having “S” shaped heads, are recommended in the
upper portion of the wall. The numerical analysis
carried out demonstrated that the bolts would be
more effective if their rigidity was properly calibrat-
ed. For each bolt the required optimum stiffness was
obtained by adding a dumper attaching the anchor to
the column.
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a
Figure 6.
The distribution of the maximum value of the failure function; (a) the outside and (b) inside views

b

Figure 7.
The cracked regions; flag of zero (0) indicates no cracking; one (1) indicates cracking has occurred

c
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The key results of the dynamic analysis for the rein-
forced walls are provided in Fig. 8(b). A significant
improvement in the structural behaviour is evident
when comparing these results with those shown in
Fig. 7.

3. NUMERICAL ANALYSIS OF LARGE-
SCALE REINFORCED CONCRETE
STRUCTURES
The other type of structured material considered here
is the heavily reinforced concrete. The durability of
both concrete and reinforced concrete structures is
often significantly impaired by the alkali-aggregate
reaction (AAR). The product of the reaction is a gel
that forms around the aggregate particles; it imbibes
water from the pore fluid and expands triggering a
progressive damage of the material. The work outlined
here is primarily concerned with application of a non-
linear continuum model which was recently developed
[13] for the description of mechanical behaviour of
reinforced concrete subjected to AAR. The model is
an extension of the framework presented earlier [10],
in which the reinforced concrete is considered as a
composite medium comprising concrete matrix and
two orthogonal families of reinforcement. The latter
formulation is generalized to incorporate the chemo-
mechanical interaction associated with continuing
AAR.
In what follows, the governing constitutive relations,
which have been incorporated in a finite element
code, are first outlined. Later, the results of some
recent numerical studies are presented, which involve
the analysis of nuclear structures affected by the
chemical degradation (cf. Ushaksaraei, Pietruszczak

&Gocevski [20]). In particular, the results that pertain
to some structural elements within the Gentilly-2 (G2)
nuclear powerplant, situated near the community of
Trois-Rivières in Quebec, are examined.

3.1. Formulation of the problem
The description of mechanical effects of AAR within
the concrete matrix incorporates a scalar parameter ζ
which is a measure of the continuing reaction and is
defined as

Here, ∊(t) is the volumetric expansion of concrete
and ∊$ is a material parameter that defines the maxi-
mum value of ∊, for a given alkali content, in the
stress free state. The evolution law is assumed in a
simple linear form

where ζ$ can be interpreted as a value of the state
variable ζ associated with the chemical equilibrium, γ
is a material constant describing rate of the reaction,
and t0 is the initiation time. The closed form integra-
tion for ζ in Eq. (8) is based on a constant value of ζ$,
where <…> are Macauley brackets. The value of ζ$
depends, in general, on the confining pressure, tem-
perature and relative humidity.
The formulation of the constitutive relation that
governs the chemo-mechanical interaction follows
the framework established in an earlier article by
Pietruszczak and Gocevski [21]. In the elastoplastic
range, the additivity of elastic and plastic strain rates
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Figure 8.
(a) Location of the reinforcing bolts (marked in red) in downstream wall; (b) cracked regions after reinforcement
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leads to

in which [De]=[Ce]-1 , where [Ce] is the elastic
compliance. In order to define the plastic strain rates,
the functional form of the yield criterion f=0 is
assumed to be affected by the progress in the reaction,
i.e. f=f(σσ,εεp, ζ ). Following a standard plasticity proce-
dure, the constitutive relation can be obtained as

where

In the equations above, [C] is the elastoplastic
 compliance operator, H is the plastic hardening mod-
ulus and δδ is the Kronecker’s delta.
For reinforced concrete, the problem is formulated in
two stages [10]. Stage I deals with the homogeneous
deformation mode prior to cracking of the concrete
matrix, whereas stage II involves a localized defor-
mation associated with formation of macrocracks.

– Stage I (prior to cracking)
The problem is referred to the frame of reference x*,
such that x*2 and x*3 are along the axes of reinforce-
ment. The average macroscopic stress/strain rates for
the composite body are defined through the volume
averaging procedure, i.e.

where η1 and η2 represent the volume fractions of the
respective sets of reinforcement, whereas σσ

 k*, εε
 k*
(k=1,2,m)are the averages of stress/strain rates in the
constituents involved. Both these local fields are
assumed to be homogeneous within themselves, so that

where [C*]’s are the compliance operators. The rein-
forcing steel is considered to be an elastic-perfectly
plastic von Mises material obeying an associated flow
rule, while the behaviour of concrete matrix is
 governed by eq.(10).

The local stress rate averages can be related to the
overall macroscopic measure σσ

 * viz.

The details on the specification of operators [B] and
[B$ ] , based on imposing some explicit kinematic
 constraints, are provided in the original reference.
Combining the above equations, the macroscopic
constitutive relation can be established

Apparently, the macroscopic stress/strain rates can
be transformed to an arbitrarily chosen global
Cartesian system by following the standard transfor-
mation rules.
The above equation defines the response of the
 composite prior to formation of macrocracks in the
 concrete matrix. In reinforced concrete structures,
the cracking is typically associated with the tensile
stress regime. Once a macrocrack forms, the formu-
lation of the problem follows the procedure that is
conceptually similar to that outlined in Section 2.1,
viz. eqs. (4)-(5).
–  Stage II (after formation of a macrocrack)
The representative volume of the material comprises
now the “intact” reinforced concrete intercepted by a
macrocrack of a given orientation n. The latter repre-
sents a composite medium within itself as it consists of
a zone of fractured concrete reinforced with steel bars. 
The procedure incorporates the stress/strain rate
averaging and the deformation within the fractured
zone (f) is defined in terms of velocity discontinuities
across the interface, g
 i . The constitutive relations
governing the behaviour of the intact material (i) and
the interface are expressed as

where [K] denotes the stiffness of the fractured zone, t
is the traction vector, and h denotes the thickness of the
cracked zone. The averaged macroscopic  constitutive
relation is defined by imposing the  continuity of
 traction along the interface, which leads to
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Here, µ=µf /h represents the ratio of the area of the
fractured zone to the representative volume of the
sample. Thus µ is, in fact, independent of h.
The approach outlined above requires an assessment
of the mechanical properties of the fractured zone,
viz. operator [K]. This zone is composed of the
 damaged concrete and the network of reinforcement.
The details on the description of mechanical charac-
teristics are provided in the article by Pietruszczak &
Winnicki [10]. 
The particular formulation employed here to
describe the nonlinear behaviour of concrete matrix
is similar to that outlined by Pietruszczak et al. [22].
It invokes a non-associated flow rule and the yield
surface is expressed in a functional form

In the equations above, σm , σ$ and  θ represent again
a set of invariant measures of the stress tensor [15],
while a’s are material constants normalized with
respect to axial compressive strength (fc); The
 degradation of strength properties is governed here
by the variable α(ζ ). In general, all degradation
 functions, for elastic moduli as well as strength, are
assumed in a simple linear form

where B’s are material parameters. Finally, in the sim-
ulations presented here, the parameter ζ$ has been
taken as a function of the confining pressure (for a
fixed value of temperature and humidity), and its evo-
lution has been described via an exponential form

where A1 is a material constant. 

3.2. Numerical analysis; simulations of structural
elements of a nuclear power plant
In this part, the mathematical framework described
in Section 3.1 is illustrated by some numerical
 examples that involve selected structural elements

within the G2 nuclear powerplant. In particular, the
simulations presented here pertain to the contain-
ment structure, the fuel exchange room R2-001 in the
reactor building as well as the spent fuel storage pool.
The analysis involves modeling of continuing AAR as
well as the non-linear simulation of a seismic event
using earthquake characteristics typical for G2 site.
– Containment structure
The evolution of damage within the concrete walls of
the containment structure of G2 is examined first.
The main issue, after 27 years of operation, is the
ultimate pressure capacity (UPC) and the air
 tightness of the reinforced concrete envelope. The
 discretized structure is shown in Fig. 9. The basic
properties of concrete and reinforcement were:
Concrete: E = 34.5 GPa; v = 0.2; fco = 35 MPa;
fto= 2.2 MPa 

Reinforcement: E= 200 GPa; v= 0.3; �σY = 400 MPa
while the values of parameters governing the kinetics
of AAR were taken as � ∊$ = 0.0104 ; γ� = 0.0104
(1/day); B1=0; B2=0; B3=0.9; A1=8.3 

The perimeter wall has circumferential and vertical
post-tensioning tendons while the upper dome  consists
of three layers of superimposed tendons. The equiva-
lent initial compressive stresses in the concrete
 sections were evaluated based on spacing of the cables.
The average values range from 10.7 MPa (for both
components in spherical plane of the superior dome)
to 5.9 MPa for circumferential and 3.5 MPa for  vertical
direction of the wall. In addition, the structure is
 heavily reinforced with two families of steel bars.
The key results describing the response of the
 structure under own weight, post-tensioning, and the
ongoing AAR are shown in Fig. 10. The reaction had
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Figure 9.
Discretazation of the containment structure
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started around 1985 and has been continuing since.
The figure presents the distribution of damage factor,β, eq.(18), after 12, 17, and 32 years of the reaction.
Note that the values of β !1 (shown in red) are
indicative of an unstable response associated with
formation of macrocracks. The results point to the
presence of a damage zone, which at some locations
penetrates through the thickness of the wall.
However, the macrocracks are not more than
0.15 mm wide. In general, the extent of damage after
over 30 years of continuing AAR is not very signifi-

cant. The containment is structurally sound and only
minor refurbishment from inside the building may be
required to ensure adequate air tightness.    
The air tightness is also examined in Fig. 11, which
shows the simulation of internal pressure test
(125 kPa). The figure presents the distribution of
damage following the pressure test. The intensity of
damage is highest in the upper part of the wall, close
to the dome, where the value β reaches 0.9. The  latter
is indicative of formation of microcracks. Indeed the
test showed that there is a minor air loss at exactly the
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Figure 10.
Distribution of damage factor, β , due to work load and the AAR continuing for 12 years (onset of micro-cracking), 17 years, and 32
years from top to bottom, respectively); horizontal section at z = 1.41 m 
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same location that is triggered by the presence of
microcracks visible inside the structure.  
Finally, the response of the structure under a seismic
excitation, typical for G2 site, has been examined.
Fig.12 shows the extent of damage that corresponds
to 30 years of continuing reaction (year 2015) follow-
ing an earthquake. It is evident that vertical
 macrocracks (shown in red) now form in the region
directly under the opening.

– Fuel exchange room and the spent fuel pool in the
nuclear reactor building
The geometry and FE discretization for the fuel
exchange room R-0021 is shown in Fig. 13. The AAR-
affected parts, with different ultimate free  expansions,
are detailed in the adjacent figure. The remaining part
of the structure is assumed to consist of reinforced
concrete exhibiting an elastic behaviour. The same fig-
ure shows the superimposed  distribution of the dam-
age factor β after 30 years of AAR. The cracked
regions, i.e. those with β !1, are again marked in dark
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Figure 12.
Distribution of damage factor,  β, following an earthquake after 30 years of continuing reaction

Figure 11.
Distribution of damage factor,  β, following an internal pressure test (125 MPa)
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red. It is evident here that the damaged zones appear
on the wall surfaces, where the expansion of concrete
due to AAR is high. The cracking through the wall
cross-sections is not very significant however. In gen-
eral, additional studies combined with in-situ tests are
required for a better calibration of the numerical
model in order to assess whether the local cracking has
an effect on air  tightness of the concrete. The concrete
aging  management program presently under prepara-
tion will insure that adequate repairs are undertaken,
if needed, so that the plant safety is never compro-
mised.
Finally, Fig. 14 deals with extent of cracking in the
spent fuel storage pool as a result of continuing
AAR. The figure shows again the distribution of the
damage factor   after 30 years of the reaction. It is evi-
dent that inside the pool there are regions where the
macrocracks form. Those cracks are clearly visible
inside the structure, as evidenced in the photograph
that is attached. 

4. FINAL REMARKS
The work reported here presents the strategies for
analysing large-scale masonry and heavily reinforced
concrete structures. This study clearly demonstrates
that, given the complex geometry, a conventional
approach, based on simplistic standards/guidelines
adopted by consulting engineering offices, would not
be adequate here. In all cases, an appropriate non-lin-
ear finite element analysis is required, examining the
history of loading, to asses the extent of damage and
the efficiency of the proposed refurbishing strategies. 
For masonry structures, the suggested methodology
is to employ a homogenization procedure to generate
the data on the directional dependence of the
mechanical response based on properties of con-
stituents. Given this data, the macroscopic material
functions appearing in the continuum formulation
can then be identified. Note that in this approach the
only experimental information required is that on
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Figure 13.
FE discretization and distribution of damage factor, β, after 30 years of AAR, in the interior of G2: entire structure (left);  
AAR-affected parts (right)

Figure 14.
Spent fuel storage pool; cracking after 30 years as a result of continuing AAR
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isotropic strength/deformation properties of con-
stituents, which can be obtained from standard mate-
rial tests.
For heavily reinforced large-scale concrete
 structures, the presence of reinforcement cannot be
modeled in a discrete sense. Thus, the reinforced
concrete should also be considered as a composite
medium comprising the concrete matrix and a set of
families of reinforcement. The overall macroscopic
behaviour can then be defined by employing suitable
averaging techniques and the chemo-mechanical
interaction can be accounted for by incorporating the
framework of chemo-plasticity.
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